# The 1989 Pacific West Coast Bottom Trawl Survey of Groundfish Resources: Estimates of Distribution, Abundance, and Length and Age Composition 

by
K. L. Weinberg, M. E. Wilkins,
R. R. Lauth, and P. A. Raymore, Jr.
U.S. DEPARTMENT OF COMMERCE

NOAA Technical Memorandum NMFS


#### Abstract

The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature.

The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The new NMFS-NWFSC series will be used by the Northwest Fisheries Science Center.


This document should be cited as follows:
Weinberg, K. L., M. E. Wilkins, R. R. Lauth, and P. A. Raymore, Jr. 1994. The 1989 Pacific west coast bottom trawl survey of groundfish resources: Estimates of distribution, abundance, and length and age composition. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC33, 168 p. plus Appendices.

Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA.

# The 1989 Pacific West Coast Bottom Trawl Survey of Groundfish Resources: Estimates of Distribution, Abundance, and Length and Age Composition 

by<br>K. L. Weinberg, M. E. Wilkins, R. R. Lauth, and P. A. Raymore, Jr.<br>Alaska Fisheries Science Center<br>7600 Sand Point Way N.E., BIN C-15700<br>Seattle, WA 98115-0070

## U.S. DEPARTMENT OF COMMERCE

Ronald H. Brown, Secretary
National Oceanic and Atmospheric Administration
D. James Baker, Under Secretary and Administrator

National Marine Fisheries Service
Rolland A. Schmitten, Assistant Administrator for Fisheries

This document is available to the public through:
National Technical Information Service
U.S. Department of Commerce

5285 Port Royal Road
Springfield, VA 22161
www.ntis.gov

## Notice to Users of this Document

This document is being made available in .PDF format for the convenience of users; however, the accuracy and correctness of the document can only be certified as was presented in the original hard copy format.

The 1989 Alaska Fisheries Science Center west coast triennial bottom trawl survey was conducted to assess stocks of groundfish inhabiting the continental shelf waters off California, Oregon, and Washington. This was the fifth survey in a series to monitor long-term trends in the distribution and abundance of these groundfish populations.

In contrast to the preceeding triennial trawl surveys, the 1989 survey design shifted emphasis away from estimating rockfish abundance. Instead, the 1989 survey objectives emphasized assessing a broader range of groundfish species. The design also focused upon precisely estimating the near-bottom component of the Pacific hake (Merluccius products) resource and juvenile (age l+) sablefish (Anoplopoma fimbria), which inhabit waters shallower than 366 m . The survey extended from Pt. Conception, California, to central Vancouver Island, British Columbia (34으' $-49^{\circ} 40^{\prime} \mathrm{N}$ lat.), between the depths of 55 and 366 m . A total of 601 stations were occupied, of which 539 were successfully sampled. Catches included 121 groundfish species.

In this report, we document the survey design and the methods used, summarize the data collected, and report the results of our analyses of distribution, abundance, and biological parameters? Included are temperature data, catch composition, relative abundance, and species distribution information Estimates of biomass, population numbers, and length and age composition are also presented.

## THIS PAGE INTENTIONALLY LEFT BLANK

INTRODUCTION ..... 1
SURVEY METHODS ..... 4
Survey Period and Sampling Area ..... 4
Vessels and Sampling Gear .....  4
Station Allocation ..... 6
Trawling Procedures ..... 7
Catch Sampling and Oceanographic Data Collection ..... 7
Data Analyses ..... 9
Results ..... 10
Haul, Catch, and Biological Data ..... 10
Temperature Data ..... 11
Relative Abundance ..... 12
Biomass and Population Estimates ..... 15
Length Composition ..... 16
Age Composition ..... 19
Length - Weight Relationships ..... 20
TABLES ..... 23
FIGURES ..... 89
ACKNOWLEDGMENTS ..... 167
CITATIONS ..... 168

## INTRODUCTION

In 1989, the fifth in an ongoing series of groundfish assessment surveys of the continental shelf resources off the coasts of California, Oregon, and Washington was carried out by the Resource Assessment and Conservation Engineering (RACE) Division of the Alaska Fisheries Science Center (AFSC). These bottom trawl surveys, initiated in 1977 and performed triennially, were designed to provide resource managers with fishery-independent data about the distribution, abundance, and biological characteristics of several commercially important species, particularly Pacific hake (Merluccius productus) (also known as Pacific whiting), sablefish (Anoplopoma fimbria), and many of the shelf rockfish species. Hydroacoustic surveys of the off-bottom component of the Pacific hake population were performed in conjunction with these bottom trawl surveys by the hydroacoustic task of the RACE Division. Using the data collected in these surveys, AFSC researchers are now able to describe the population trends of major west coast groundfish species over the last 13 years.

The 1977 bottom trawl survey sampled between Pt. Hueneme, California, ( $34^{\circ} \mathrm{N}$ lat.) to the U.S. -Canada border in depths ranging from 91 to $457 \mathrm{~m}(50-250 \mathrm{fm})$. Sampling effort was allocated based on then-current fishery catch information into depth and geographic strata. The following two surveys, conducted in 1980 and 1983, emphasized obtaining better estimates of canary (Sebastes pinniger) and yellowtail rockfish (S. flavidus), while maintaining the goals of a multispecies
monitoring program. Strata were adjusted and sampling depths shifted to cover 55 to $366 \mathrm{~m}(30-200 \mathrm{fm})$, while the latitudinal boundaries extended from Monterey Bay, California ( $36^{\circ} 48^{\prime} N$ lat.), to northern Vancouver Island, British Columbia, ( $50^{\circ} \mathrm{N}$ lat.) in 1980 and to Vancouver Island's Estevan Point (49¹5'N lat.) in 1983. The results of the latter two surveys indicated the need for further work on improving the precision of the canary and yellowtail rockfish abundance estimates. Consequently, the sampling effort was again reallocated in 1986. The results of the 1977, 1980, 1983, and 1986 surveys were presented by Gunderson and Sample (1980), Weinberg et al. (1984), and Coleman (1986, 1988). Results of the these first four surveys were also used to examine trends in the distribution and abundance of 14 commercially important groundfish species (Dark and Wilkins, in press), while data from all of the triennial surveys to date were examined to define rockfish assemblages off the Oregon and Washington coast (Weinberg, in press).

Despite efforts to improve the precision of rockfish abundance estimates over the first four iterations of the triennial survey, the large variances of the estimates remained a problem. We concluded that precise estimates of rockfish abundance were not possible using current trawl survey methods and that a higher priority should be given to obtaining the information that the survey methods can provide. Consequently, the 1989 survey design emphasized a multispecies monitoring survey which also focused on precisely estimating Pacific hake
and pre-recruit sablefish abundance. The following were the specific objectives of the 1989 survey:

1) to continue monitoring the status of groundfish stocks;
2) to describe and assess the demersal component of the Pacific hake resource;
3) to describe and assess the abundance of pre-recruit sablefish;
4) to determine the biological characteristics, such as, size and age compositions, length-weight relationships, feeding habits, and size at maturity of the populations of commercially important groundfish species;
5) to continue to study the movement of juvenile sablefish through tagging;
6) to collect oceanographic data describing habitat, including sea temperature and salinity profiles; and,
7) to collect samples requested for special studies conducted by scientists at various fishery agencies and academic institutions.

This report documents the survey design and field procedure used, summarizes the data collected, and presents the results of the standard PACE analyses. Included are summaries of catches, relative densities, distributions, and estimates of biomass, population numbers, and size compositions for the more commercially important species. Age compositions are also presented for Pacific- hake, Pacific ocean perch (S. alutus)., canary rockfish, and splitnose rockfish (S. diplonroa), the four
species having age analyses completed to date. For the sake of brevity, discussion concentrates on the survey's primary target species, Pacific hake and sablefish, for the areas of -most concern to management. Unabridged printouts of the results from major analyses are available -upon request as appendices bound in a separate volume or on floppy disk.

## SURVEY METHODS

## Survey Period and Sampling Area

The 1989 survey was conducted from July 7 to September 29, paralleling the time period of previous triennial surveys. Operations began off Pt. Conception, California, and proceeded northward into Canadian waters off central Vancouver Island (Nootka Sound), British Columbia (34ㅇㅇ́-4940'N lat.). Water depth at survey stations ranged between 55 and $366 \mathrm{~m}(30-200 \mathrm{fm})$. The 1989 survey area extended farther south than recent triennial surveys to facilitate the detection of concentrations of juvenile Pacific hake and sablefish. Stations off Vancouver Island were sampled to help determine Pacific hake densities at the northern limits of its distribution and to collect complete data sets on transboundary stocks such as yellowtail rockfish, Pacific ocean perch, and lingcod (Ophiodon elongatus).

Vessels and Sampling Gear
The 30.8 m F/V Pat San Marie powered by an 865 horsepower main engine and the $31.7 \mathrm{~m} F / \mathrm{V}$ Golden Fleece powered by a pair-of 624 horsepower main engines were chartered for the survey. Each
vessel was equipped with dual net reels, modern electronics, and Loran C navigational aids.

The Resource and Conservation Engineering Division's standardized high-opening polyethylene Noreastern rockfish trawls equipped with roller gear were used by both vessels throughout the 1989 survey (Fig. 1). This trawl has a 27.2 m headrope and a 37.4 m footrope. All trawls were rigged consistent with RACE Division's survey gear standards employing three 55 m dandylines (1.59 cm steel cable) connected to each wing and fished with 2.1 x 1.5 m steel V-doors weighing approximately 567 kg each.

Measurements of the trawl's horizontal opening (wingtip to wingtip) were collected during most tows using a Scanmar net mensuration system. Mean net widths were calculated for each trawl haul. The overall mean path width of trawl hauls by the Pat San Marie was 13.4 m (range $10.9-16.3 \mathrm{~m}$ ). The overall mean path width of trawl hauls by the Golden Fleece was 12.4 m (range $9.5-14.9 \mathrm{~m})$. In those instances when horizontal measurements were unavailable, average net width was estimated using the following relationship between scope (length of trawl warp deployed) and net width:

$$
\text { Width }(\mathrm{m})=14.8828-(513.4241 / \text { Scope }(\mathrm{m})) .
$$

This relationship was determined by a regression of net width on scope from hauls with valid observations. In past surveys, we used an overall survey mean net width for hauls without net width data, however this new procedure results in more accurate
measures of effort for each trawl haul (distance fished $x$ mean net width) which is an essential factor for estimating biomass and population abundance using the area-swept methodology.

## Station Allocation

A systematic-random design was used to allocate sampling effort in accordance with the primary survey objectives: to estimate the abundance of Pacific hake and juvenile sablefish while maintaining the broader multispecies assessment goal. The entire survey area was fitted with a sampling framework similar to the low density levels used in prior surveys. Four bands of latitude were identified from recent fishery statistics and survey results as having higher than average densities of age l+ sablefish. These areas were designated "high-density" strata and were sampled at a higher rate. The boundaries of these highdensity strata were $34^{\circ} 30^{\prime}-35^{\circ} 40^{\prime}, 36^{\circ} 50^{\prime}-38^{\circ} 00^{\prime}, 44^{\circ} 40^{\prime}-46^{\circ} 30 \prime$, and $47^{\circ} 50^{\prime}-48^{\circ} 20^{\prime} N$ lat.

The survey area was further divided into two depth strata separated by the 183 m contour (100 fm); Pacific hake and juvenile sablefish catch rates decline significantly below this depth. Tracklines were placed across the shallow (55-183 m) and deep (184-366 m) strata at 18.5 km intervals. In the four highdensity strata, additional tracklines were placed, halfway between the 18.5 km tracklines across the shallow depth stratum only. Figure 2 illustrates the station allocation strategy. Stations were randomly located along tracklines at the rate of one station per 7.4 km in the shallow stratum and 9.3 km in the deep stratum.

At least one station was assigned to each depth stratum along each trackline segment. A total of 601 stations were established. The two vessels fished alternate tracklines (alternate pairs in the high-density areas) to help usmeasure the relative fishing power of the two-vessels more accurately.

Trawling Procedures
Stations were first located by Loran $C$ and then examined using an echo sounder prior, to towing. If the terrain was determined to be too rough to allow the successful completion of a tow, an alternate site was searched for within a 1 mile radius of the original. If no favorable ground was located within a reasonable time, the station was declared untrawlable and abandoned. Towing was conducted at a speed of 3.0 knots for 30 . minutes in duration. Skippers tried to maintain a constant depth while towing. The gear was allowed to settle-for 3 to 8 minutes following the braking of the winches before towing actually commenced. If the gear was damaged during the tow severely enough to affect catch composition, the haul was considered, unsatisfactory and the station was either repeated or abandoned. Unsuccessful tows were not used in later analyses.

Catch Sampling and Oceanographic Data Collection
The same procedures for catch processing documented by, Gunderson and Sample (1980) were used in 1989. Briefly, catches, which fit on the sampling table (about 1 metric ton (t)) were processed entirely, while larger catches where either weighed by
an electronic load cell (up to 4.5 t), measured volumetrically, or estimated visually. In all cases, samples greater than 1 t were subsampled using the method described by Hughes (1976). Catches were then sorted, weighed, and enumerated by species with subsamples extrapolated to the entire catch using a microcomputer on board the vessel. Fork length measurements (FL) to the nearest centimeter were obtained for Pacific hake and sablefish by sex at all stations. Lengths were also taken for other species of commercial importance when 10 or more individuals were caught.

Otoliths, used for age determination, along with individual specimen weight and maturity data were collected from a variety of species. Sample collections for Pacific hake and sablefish were stratified by size (5 per sex per centimeter (FL)) for biological subareas. Collections for canary and splitnose rockfish were stratified by size intervals for the entire survey area. Random collections were made for yellowtail, canary, and shortbelly (S. jordani) rockfish, and Pacific ocean perch. Special requests included the collection of. length-width and length-girth measurements for selected flatfish-and roundfish species, respectively, stomachs, fin rays, tissue samples, and whole fish specimens.

Oceanographic data collection was limited to surface temperatures taken by bucket thermometer at most sites and temperature/salinity profiles of the water column which included bottom-conditions using a Seabird CTD probe at the innermost and
outermost stations of tracklines sampled, by the Pat San Marie.

## Data Analyses

Several analyses are performed routinely on the RACE survey data. These include:

1) estimation of relative abundance,
2) estimation of population biomass,
3) estimation of population numbers,
4) estimation of the population's size composition, and
5) estimation of the population's age composition.

We used the area-swept method described by Gunderson and Sample (1980) to estimate population biomass and numbers. Briefly, this method entailed standardizing samples from each station into catch per unit effort (CPUE)- in terms of either kilograms or number per hectare trawled (kg/ha, no/ha) and calculating the arithmetic mean for each sampling stratum. Relative abundance, (mean CPUE) computed for International North Pacific Fisheries Commission (INPFC) statistical areas and for the total survey is the sum of sampling strata mean CPUEs weighted by their respective areas. Population biomass and number are defined as the sum of the strata mean CPUEs multiplied by the stratum areas. In cases where our sampling strata boundaries overlap more than one INPFC area, we take the proportion of the sampling stratum area within the INPFC region and multiply it by the overall sampling stratum mean CPUE.

Estimated population size compositions are based on the
length frequency data collected at each station. These data are extrapolated to estimate the number of fish per sex-centimeter per hectare trawled. These estimates were combined for all stations to estimate relative length frequencies for the stratum population; the relative frequencies were then applied to each stratum population estimate to yield the number of fish in each sex-centimeter category in the stratum. As with abundance estimates, stratum estimates were summed to derive the estimated size compositions for individual INPFC areas and for the total survey.

Population age compositions are based upon data from otoliths read using the break-and-burntechnique. Pacific hake and Pacific ocean perch otoliths were aged by the Age and Growth Unit of the AFSC's Resource Ecology and Fisheries Management Division. Otoliths from canary-and splitnose rockfish were aged by Mary Yoklavich of the Moss Landing Marine Labs, Moss Landing, California. Population age composition was estimated by apportioning ages to the estimated population at each length interval. Regional age length keys were derived to minimize the effects of age-length relationships which may vary latitudinally (Westrheim and Ricker 1978; Kimura 1977).

RESULTS

Haul, Catch, and Biological Data During the 1989 survey, 539 of 601 stations were successfully completed within the 55 to 366 m depth bounds.

Fifteen tows were unsuccessful due to damaged trawls, one haul was made too shallow and thus omitted from the analyses, and 46 stations were abandoned due to untrawlable bottom. Figure 2 illustrates the number of planned stations and the number of successfully completed stations by stratum. Table 1 shows the sampling densities achieved for the survey strata. Figure 3. shows the location of successful tows by vessel.

A total of 121 fish species representing 42 families were identified over the course of the survey. Members from three additional families, the lampreys (Petromyzontidae), the viperfish (Stomiidae), and the hatchetfish (Sternoptychidae) were taken but identified only to genus. Table 2 lists the families and species (Robins 1991) in addition to their frequencies of occurrence and depth ranges in trawl samples. The greatest number of species taken belonged to the rockfish (Scorpaenidae) family with 38, followed by the flatfishes (Pleuronectidae) with 14, and the skates (Rajidae) with 7 species. Table 3 reports the additional sampling of biological data completed on a species-byspecies basis. Appendix A summarizes the catch data by position for each vessel.

## Temperature Data

Sea surface temperatures obtained from 520 stations using a bucket thermometer ranged from $9.2^{\circ}$ to $17.6^{\circ} \mathrm{C}$ The overall mean surface temperature-was $13.3^{\circ} \mathrm{C}$. Bottom temperatures obtained from 87 CTD castsranged from $6.3^{\circ}$ to $9.7^{\circ} \mathrm{C}$. The mean bottom. temperature was $7.6^{\circ} \mathrm{C}$. Figures 4 and 5 illustrate the-observed
surface and bottom temperatures, respectively, by latitude from the 1989 survey and in previous triennial surveys.

Relative Abundance
The 20 most predominant groundfish species are presented by depth stratum for the entire survey area, U.S. waters, and individual INPFC statistical areas in Tables 4-12. The mean groundfish CPUE for the total area surveyed was $213.6 \mathrm{~kg} / \mathrm{ha}$ (Table 4). By area, mean fish densities were highest in the Vancouver INPFC area (286.5 kg/ha), followed by the Monterey (233.9 kg/ha), Columbia (188.5 kg/ha), Eureka (115.8 kg/ha), and Conception (106.0 kg/ha) INPFC areas (Tables 6-12). The complete listings of the relative abundance of all fish ranked by mean CPUE for INPFC areas and by depth strata are presented in Appendix $B$ in addition to rankings of fish and invertebrates for the entire survey area.

Pacific hake was the most abundant groundfish species overall, accounting for $34 \%$ of the total survey groundfish CPUE (72.8 kg/ha) (Table 4) and 43\% of the CPUE in U.S. waters alone (82.4 kg/ha) (Table 5). The highest average CPUE for Pacific hake was in the Columbia INPFC area (114.3 kg/ha) where it comprised nearly 61\% of the area's total. They were least abundant in the Conception INPFC area ( $6.9 \mathrm{~kg} / \mathrm{ha}$ ) where it accounted for only 7\% of all-groundfish. Besides the Columbia INPFC area, Pacific hake also dominated samples in the Monterey (79.1 kg/ha), Eureka (39.5 kg/ha), and the U.S. portion of the Vancouver (39.2 kg/ha) INPFC areas (Tables 6-12).

Sablefish ranked fifth in relative abundance among groundfish species surveywide ( $8.8 \mathrm{~kg} / \mathrm{ha}$ ) (Table 4) and fourth in U.S. waters alone ( $8.6 \mathrm{~kg} / \mathrm{ha}$ ) (Table 5), accounting for about 4\% of the catch in both regions. Sablefish catch rates, on average, were highest in the Monterey INPFC area (14.5 kg/ha), followed by Vancouver (7.7 kg/ha), Eureka (7.4 kg/ha), Columbia, (7.4 kg/ha), and conception (1.9 kg/ha) INPFC areas (Tables 6-12). S ablefish accounted for between 2 and 6 percent of INPFC area groundfish catches.

Catch composition and relative densities varied widely among the different geographic areas. After Pacific hake, the four most dominant species (See Table 2 for scientific names) for the total survey area were spiny dogfish, arrowtooth flounder, jack mackerel, and sablefish (Table 4). These five species as a whole accounted for 65\% of groundfish CPUE., In U.S. waters only, Pacific sanddab replaced arrowtooth flounder among the five most dominant species (Table 5). Moving from south to north and listed in order of abundance, the five most prominent species in the Conception INPFC area were bocaccio, Pacific sanddab, widow rockfish, chilipepper, and Pacific hake (Table 6); in the Monterey INPFC area, Pacific hake, spiny dogfish, shortbelly rockfish, chilipepper, and sablefish (Table 7) in the Eureka INPFC area Pacific hake, jack mackerel, sablefish, chub-mackerel, and Dover sole (Table 8); in the Columbia INPFC area Pacific hake, jack mackerel, Pacific sanddab, sablefish, and rex sole (Table 9); and in the Vancouver INPFC area spiny dogfish,
arrowtooth flounder, Pacific hake, bocaccio, and yellowtail rockfish (Table 12).

The catch composition also varied between depth strata. In the shallow stratum for the entire survey area Pacific hake dominated catches, followed by spiny dogfish, jack mackerel, arrowtooth flounder, and Pacific sanddab (Table 4). Sablefish ranked sixth in abundance in the shallow stratum. The five most dominant species in the deep stratum (184-366 m) were Pacific hake, shortbelly rockfish, Pacific ocean perch, sablefish, and arrowtooth flounder (Table 4).

Maps of species relative abundance based on station CPUE values and their geographical distributions are presented in Figures 6-31. This series of maps begin with the target species, Pacific hake and sablefish and are followed by these other commercially valued groundfish listed in alphabetical order.

```
Arrowtooth flounder
Bocaccio
Canary rockfish
Chilipepper
Darkblotched rockfish
Dover sole
```

 Pacific halibut Sharpchin rockfish


> Silvergray rockfish Spiny dogfish Splitnose rockfish Stripetail rockfish Widow rockfish Yellowtail rockfish

Positive catch rates for each station were sorted in decreasing order and categorized as the top 10\%, middle 30\%, and lowest 60\% of the values. The CPUE levels are represented by circles with the larger circles matched to the higher CPUE values. The distribution of sampling effort should be considered when using these charts since increased sampling in an area may give the impression of high densities when, in fact, CPUE was only moderate or even fairly low.

Estimates of abundance in terms of biomass, measured in metric tons, and associated $90 \%$ confidence intervals are presented for various taxa in the total survey and by INPFC area and depth stratum in Tables 13-15. Similarly, estimates of population numbers are presented for various species in Tables 16-18. Computer generated listings of biomass and population numbers are presented for major species in Appendix C.

The on-bottom component of the Pacific hake population was estimated at 379,810 t for the entire area surveyed (Table 13). Three of the five INPFC areasaccounted for 95 of the total estimate: 59\% in the Columbia area, 24\% in the Monterey-area, and $12 \%$ in the Vancouver area. Only $6 \%$ of the estimated biomass was in Canadian waters $(22,764$ t) (Table 13). In the shallow stratum, Pacific hake biomass was estimated to be 314,817 t or roughly $83 \%$ of the total Pacific hake biomass, while 64,993 t was estimated for the deep stratum (Tables 14 and 15).

Sablefish biomass was, estimated to be 45,931 tor the total area surveyed (Table 13). The Monterey (36\%), Columbia (32\%). and Vancouver (23\%) INPFC areas contributed to nearly 91\% of this total biomass between the depths of 55 and 366 m . Sablefish in Canadian waters (7,465 t) contributed to $16 \%$ of the total estimate (Table 13). In the shallow stratum, sablefish biomass was estimated to be 35,552 t or $77 \%$ of the total sablefish biomass, while 10,380 t was estimated for the deep stratum (Tables 14 and 15).

We should caution that the biomass and population estimates presented are likely to be conservative since only a portion of the stock may be available to the bottom trawl and some escapement may occur. Because of the lack of data on species-byspecies catchability, abundance calculations are based on the assumption that all fish in front of the trawl between wingtips are captured. The degree of conservative bias will vary among species. For instance, a large portion of the total Pacific hake stock is pelagic and would be missed by a bottom trawl. Also, because roller gear is used, escapement underneath the trawl is likely to occur, particularly for flatfish species. Depths and areas sampled should always be considered when evaluating species abundance estimates.

## Length Composition

The estimated population length compositions for several commercially important species by sex and INPFC area are depicted in Figures 32-60. Figures 32-34 include length compositions for Pacific hake by INPFC area and depth stratum, while similar data for sablefish are illustrated in Figures 35-37. Length compositions by INPFC area only are given for the remaining species, presented in alphabetical order (Figs. 38-60). In each of these figures, three curves are shown per area: the percentage of males at each length; the percentage of females at each length, and the percentage of males, females, and unsexed fish combined (total) at each length. Although typically not present in the male/female plots, juvenile modes can be seen in
the panels labeled "total." In some instances, the proportion of the population at a specific length or length interval may exceed the scale. In these cases, only the peak percentages are indicated by an arrow and the percentage of that peak stated. Population percentages at lengths adjacent to or close to peak values may not be readily apparent. For more detail, Appendix D contains the computer generated listings of estimated length compositions in tabular form for major species. by sex for each, INPFC area. Upon request, the results of these analyses can be. made available on floppy disk for any species of interest in which length data was collected.

In general, there were four length modes in the Pacific hake population. Small peaks were at 12,25 , and 37 cm , but the majority of the population was centered at 45 cm (Fig. 32). The overall population mean length was 41.6 cm . Specimens ranged in length from 9 to 85 cm , surveywide. The male and female components of the population were very similar with-the average size of females ( 42.5 cm ) being only slightly larger than that of the males (41.3 cm). Pacific hake were generally, smaller in the southern portion of the survey region. Juveniles (under 20 cm ) were encountered in greatest abundance in the Conception and Monterey INPFC areas, whereas the majority of specimens larger than 55 cm were encountered in the Vancouver INPFC area. Pacific hake lengths averaged $22.3,38.7,30.1,45.8$, and 49.0 cm for the Conception, Monterey, Eureka, Columbia, and Vancouver INPFC areas, respectively. On average, lengths of Pacific hake were
slightly larger in deeper waters, however no strong indication of depth- stratification was observed (Figs. 33 and 34).

The 55-366 m depth bounds of the survey encompasses the shallower end of the sablefish distribution. At these-depths, the estimated length distribution for sablefish was generally bimodal with peaks at 24 and 39 cm (Fig. 35). Larger fish were present, however their numbers diminished with increasing size, particularly greater than 55 cm . The majority of the population ranged between 37 and 48 cm in length. The overall average length of the population was 42.4 cm . Sablefish samples from throughout the survey area ranged from 19 to 95 cm in length. The average length of both male and-females was about 44 cm . Juvenile modes (under 30 cm ) were present in all INPFC areas except Monterey and contributed most to the area's total population in the Conception and-Vancouver INPFC areas. Sablefish lengths generally increased as sampling moved northward. The population averaged 37.1, 40.5, 46.0, 46.4, and 40.1 cm for the Conception, Monterey, Eureka, Columbia, and Vancouver INPFC. areas, respectively. The smaller average size observed in the Vancouver INPFC area was due to a proportionally large number of juveniles (24-27 cm in length) encountered in U.S. waters. The largest sablefish encountered were in Canadian waters where two modes occurred, 28 and 61 cm . Not surprisingly, larger fish tended to inhabit deeper waters (Figs. 36 and 37)

## Age Composition

Structures for age determinationwere collected for a variety of species. To date, however, only otoliths from Pacific hake, Pacific ocean perch, canary rockfish, and splitnose rockfish have been analyzed. Population estimates for these species by year class and mean length at age are presentedby INPFC area in Tables 19-48. Estimated age composition by sex and INPFC area are illustrated in Figures 61-72 for each depth stratum. Computer listings of the age-length -keys by sex and INPFC area are presented in Appendix E.

Pacific hake ages from 946 specimens ranged from 0 to 19 years (Tables 19-26, Figs. 61-63). Age-length keys were constructed from samples using: the combined Conception and Monterey INPFC areas; the combined Eureka, Columbia, and U.S. portion of the Vancouver INPFC areas; the Canadian portion of the Vancouver INPFC area; the total Vancouver INPFC area; and the entire survey area. The l-, 5-, and 9-year olds, corresponding to the 1988, 1984, and 1980 year classes, were the most abundant age groups accounting for approximately $14 \%$, $26 \%$, and $38 \%$ of the total estimated population, respectively.

Pacific ocean perch ages from 830 specimens ranged from 1 to 81 years (Tables27-32, Figs. 64-66). Age-length keys were constructed from samples using: the combined Eureka and Columbia INPFC areas; the U.S. portion of the Vancouver INPFC area, the Canadian portion of the Vancouver INPFC area, the total, Vancouver INPFC area, and the entire survey area. The 4- and 8-year olds,
corresponding to the 1985 and 1981 year classes, were the most abundant age groups accounting for approximately $19 \%$ and $15 \%$ of the total estimated population, respectively.

Canary rockfish ages from 256 specimens ranged from 3 to 57 years (Tables 33-40, Figs. 67-69). Due to the small sample size, a single age-length key was constructed using samples from the entire survey area. The 5- and 11-year olds, corresponding to the 1984 and 1978 year classes, were the most abundant age groups accounting for approximately $13 \%$ and $11 \%$ of the total estimated population, respectively.

Splitnose rockfish ages from 274 specimens ranged from 1 to 68 years (Tables 41-48, Figs. 70-72). Like canary rockfish, a single age-length key was constructed using samples from the entire survey area. The 5-year olds, corresponding to the 1984 year class. was the most abundant age group accounting for approximately $20 \%$ of the total estimated population.

Length - Weight Relationships
Individual whole fish weights (g) were obtained from a variety of species according to a stratified sampling scheme, 5/sex/cm per INPFC area. A length-weight regression using a linear least squares model calculated a predicted weight given a known fork length. The following equations describe the relationships for Pacific hake and sablefish:

Estimated Pacific hake weight in grams $=0.0054866 \times \mathrm{L}^{3.043290}$ Estimated sablefish weight in grams $=0.0011674 \mathrm{x} \mathrm{L}^{3.549646}$

Table 49 summarizes the length-weight relationships by sex and sexes combined for all species sampled. Predicted mean weights were typically greater for females than males.

## THIS PAGE INTENTIONALLY LEFT BLANK

## TABLES

No.

1.--The 1989 sampling strata boundaries used for analysis purposes ${ }^{1}$
areas (nmi ${ }^{2}$ ), and sampling statistics based on successful towing
performance. Strata have been grouped according to International
North Pacific Fisheries Commission management areas. Differences
in totals are due to rounding ..... 27
2.--Fish species caught during the 1989 west coast groundfish survey ..... 28
3.--Inventory of biological data by species, depth stratum, and International North Pacific Fisheries Commission statistical area collected during the 1989 west coast triennial groundfish $\mathrm{M}=$ maturity, $\mathrm{S}=$ Stomach observations, $\mathrm{T}=$ tagged fish, $\mathrm{L}=$ length, $\mathrm{P}=$ pathology, data) ..... 35
4 .--Dominant fish species observed during the 1989 triennial west coast groundfish survey, ranked by CPUE (kg/ha trawled) for the entire survey-area. ..... 39
5.--Dominant fish species observed during the 1989 triennial west coast. groundfish survey, ranked by CPUE (kg/ha trawled) in the United States ..... 40
6.--Dominant fish species observed during the 1989 triennial west coast groundfish survey, ranked by CPUE (kg/ha trawled) in the International North Pacific Fisheries Commission, Conception area.... ..... 41
7.--Dominant fish species observed during the 1989 triennial west coast groundfish survey, ranked by CPUE (kg/ha trawled) in the International North Pacific Fisheries Commission Monterey area ..... 42
8.--Dominant fish species observed during the 1989 triennial west coast groundfish survey, ranked by CPUE (kg/ha trawled) in the International North Pacific Fisheries Commission Eureka area ..... 43
9.--Dominant fish species observed during the 1989 triennial west coast groundfish survey, ranked by CPUE (kg/ha trawled) in the. International North Pacific Fisheries Commission Columbia area ..... 44
10.--Dominant fish species observed during the 1989 triennial west coast groundfish survey ranked by CPUE (kg/ha trawled) in the U.S. portion of the International North Pacific Fisheries Commission Vancouver area ..... 45
11.--Dominant fish species. observed during the 1989 triennial west coast ground fish survey, ranked by CPUE (kg/ha trawled) in the Canadian portion of the International North Pacific-Fisheries Commission Vancouver area ..... 46
12.--Dominant fish species observed during the 1989 triennial west coast groundfish survey, ranked by CPUE (kg/ha trawled) in the International North Pacific Fisheries Commission Vancouver area ..... 47
13. --Estimates of fish biomase from the 1989 west coast groundfish survey by INPFC area for the combined depth (55-366 m); Confidence intervals are expressed as a percentage of the point estimate. T denotes trace value. Difference in totals result from rounding ..... 48

TABLES
No. Page
14 .--Estimates of fish biomass from the 1989 west coast groundfish survey by INPFC area for the shallow depth stratum (55-183 m) . Confidence intervals are expressed as a percentage of the point estimate. T denotes trace value. Differences in totals result from rounding ..... 50
15 .--Estimates of fish biomass from the 1989 west coast groundfish survey by INPFC area for the deep stratum (184-366 m). Confidence intervals are expressed as a percentage of the point estimate. T denotes trace value. Differences in totals result from rounding ..... 52
16:--Estimates of fish population numbers (x1000) from the 1989 west coast groundfish survey by INPFC area for the combined depth strata (55-366 m). Confidence intervals are expressed as a percentage of the point estimate. $T$ denotes trace value. Difference in totals result from rounding ..... 54
17.--Estimates of fish population numbers (x1000) from the 1989 west coast groundfish survey by INPFC area for the shallow stratum $(55-183 \mathrm{~m})$. Confidence intervals are expressed as a percentage of the point estimate. $T$ denotes trace value. Differences in totals result from rounding ..... 56
18.--Estimates of fish population numbers (x1000) from the 1989 west coast groundfish survey by INPFC area for the deep stratum (184-366 m). Confidence intervals are expressed as a percentage of the point estimate. $T$ denotes trace value. Differences in totals result from rounding ..... 58
19.--Population estimates for Pacific hake by age group and mean length at age in the International North Pacific Fisheries Commission Conception area ..... 60
20.--Population estimates for Pacific hake by age group and mean length at age in the International North Pacific Fisheries Commission Monterey area ..... 61
21 .--Population estimates for Pacific hake by age group and mean length at age in the International North Pacific Fisheries Commission Eureka area ..... 62
22 .--Population estimates for Pacific hake by age group and mean length at age in the International North Pacific Fisheries Commission Columbia area ..... 63
23 .--Population estimates for Pacific hake by age group and mean length at age in the International North Pacific Fisheries Commission U.S. Vancouver area ..... 64
24 .--Population estimates for Pacific hake by age group and mean length at age in the International North Pacific Fisheries Commission Canadian Vancouver area ..... 64
25 .--Population estimates for Pacific hake by age group and mean length at age in the International North Pacific Fisheries Commission Vancouver area ..... 65

## TABLES

Page
26.--Population estimates for Pacific hake by age group and mean length at age in the International North Pacific Fisheries Commission areas combined ..... 65
27 .--Population estimates for Pacific ocean perch by age group and mean length at age in the International North Pacific Fisheries Commission Eureka area ..... 66
28.--Population estimates for Pacific ocean perch by age group and mean length at age in the International North Pacific Fisheries Commission Columbia area ..... 67
29. --Population estimates for Pacific ocean perch by age group and mean length at age in the International North Pacific Fisheries Commission U.S. Vancouver area ..... 68
30 .--Population estimates for Pacific ocean perch by age group and mean length at age in the International North Pacific Fisheries Commission Canadian Vancouver area ..... 69
31.--Population estimates for-Pacific ocean perch by age group and mean length at age in the International North Pacific Fisheries Commission Vancouver area ..... 70
32.-- Population estimates for Pacific ocean perch by age group and mean length at age in the International North Pacific Fisheries Commission areas combined ..... 71
33.--Population estimates for canary rockfish by age group and mean length at age in the International North Pacific Fisheries Commission Conception area. ..... 72
34.--Population estimates for canary rockfish by age group and mean length at age in the International North Pacific Fisheries Commission Monterey area ..... 72
35.--Population estimates for canary rockfish by age group and mean length at age in the International North Pacific Fisheries Commission Eureka area ..... 73
36.--Population estimates for canary rockfish by age group and mean length at age in the International North Pacific Fisheries Commission Columbia area ..... 74
37.--Population estimates for canary rockfish by age group and mean length at age in the International North Pacific Fisheries Commission U.S. Vancouver area ..... 75
38. --Population estimates for canary rockfish by age group and mean.
length at age in the International North Pacific Fisheries Commission Canadian Vancouver area ..... 76
39. --Population estimates for canary rockfish by age group and mean length at age in the International North Pacific Fisheries Commission Vancouver area ..... 77
40 .--Population estimates for canary rockfish by age group and mean length at age in the International North Pacific Fisheries Commission areas combined ..... 78

TABLES
No.
Page
41.--Population estimates for splitnose rockfish by age group and mean length at age in the International North Pacific Fisheries Commission Conception area79
42 .--Population estimates for splitnose rockfish-by age group and mean length at age in the International North Pacific Fisheries Commission Monterey area ..... 80
43.--Population estimates for splitnose rockfish by age group andmean length at age in the International North Pacific FisheriesCommission Eureka area81
44 .--Population estimates for splitnose rockfish by age group and mean length at age in the International North Pacific Fisheries Commission Columbia area ..... 82
45.--Population estimates for splitnose rockfish by age group andmean length at age in the International North Pacific FisheriesCommission U.S. Vancouver area83
46. --Population estimates for splitnose rockfish by age group andmean length at age in the International North, Pacific FisheriesCommission Canadian Vancouver area84
47.--Population estimates for splitnose rockfish by age group and mean length at age in the International North Pacific Fisheries Commission Vancouver area ..... 85
48 .--Population estimates for splitnose rockfish by age group andmean length at age in the International North Pacific FisheriesCommission areas combined86
49 .--The length-weight relationships from the 1989 triennial west coast survey using a linear least squares fit for the equation: Estimated Weight ( $g$ ) $=a$ * Fork Length (cm) ** b......................... ..... 87

Table 1.--The 1989 sampling strata boundaries used for analysis purposes ${ }^{1}$, areas (nmi ${ }^{2}$ ), and sampling statistics based on successful towing performance. Strata have been grouped according to International North Pacific Fisheries Commission management areas. Differences in totals are due to rounding.
' The original survey design combined strata $13-15$ and $23-25$ into one shallow and one deep stratum for the allocating sampling effort.

Table 2 .--Fish species caught during the 1989 west coast groundfish survey.

| Family and Species* | Common Name* | Frequency of occurrence | Min. depth (m) | Max. depth (m) | Mean depth (m) | Latitude range S/N (ddmm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Myxinidae |  |  |  |  |  |  |
| Eptatretus stouti | Pacific hagfish | 6 | 115 | 293 | 161 | 3834/4845 |
|  |  |  |  |  |  |  |
| Petromyzontidae |  |  |  |  |  |  |
| Petromyzontidae unidentified | Lamprey unidentified | 1 | 115 | 115 | 115 | 3759/3759 |
| Chimaer idae |  |  |  |  |  |  |
| Hydrolegus colliei | Spotted ratfish | 240 | 57 | 337 | 147 | 3434/4935 |
| Hexanchidae |  |  |  |  |  |  |
| Hexanchus griseus | sixgill shark | 4 | 71 | 190 | 127 | 3749/4354 |
| Scyliorhinidae |  |  |  |  |  |  |
| Apristurus brumneus | Brown cat shark | 4 | 282 | 337 | 308 | 3445/4234 |
| Apristurus kampae ${ }^{\text {b }}$ | Longnose cat shark ${ }^{\text {b }}$ | 3 | 289 | 331 | 316 | 3925/4224 |
| Carcharhinidae |  |  |  |  |  |  |
| Galearhinus zyopterus | Soupf in shark | . 1 | 108 | 108 | 108 | 3504/3504 |
| Squal idae |  |  |  |  |  |  |
| Squalus acanthias | Spiny dogfish | 364 | 55 | 357 | 142 | 3446/4935 |
| Squatinidae |  |  |  |  |  |  |
| Squatina californica | Pacific angel shark ${ }^{\text {b }}$ | 1 | 57 | 57 | 57 | 3445/3445 |
| Torpedinidae |  | . |  |  |  |  |
| Torpedo californica | Pacific electric ray | 44 | 59 | 260 | 113 | 3434/4631 |
| Rajidae |  |  |  |  |  |  |
| Rajidae unidentified | Skate unidentified | 4 | 59 | 278 | 174 | 3915/4905 |
| Bathyraja interrupta | Sandpaper skate | 77 | 79 | 357 | 195 | 3436/4924 |
| Bathyraja parmifera | Alaska skate | 2 | 119 | 124 | 122 | 3501/4539 |
| Bathyraja trachura | Black skate ${ }^{\text {b }}$ | 5 | 128 | 166 | 148 | 4534/4800 |
| Raja binoculata | Big skate | 55 | 57 | 315 | 130 | 3554/4904 |

Table 2 .--Continued.

| Family and Species* | Common Name ${ }^{\text {a }}$ | Frequency of occurrence | Min. depth (m) | Max. depth (m) | Mean depth (m) | Latitude range S/M (ddmm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rajidae (cont.) : |  |  |  |  |  |  |
| Raja inornata | California skate | 39 | 60 | 311 | 114. | 3501/4304 |
| Raja rhina | Longnose skate | 136 | 60. | 327 | 158 | 3436/4934 |
| Acipenseridae |  |  |  |  |  |  |
| Acipenser medirostris | Green sturgeon | 1 | 60 | 60 | 60 | 4745/4745 |
| Clupeidae |  |  |  |  |  |  |
| Alose sepidissime | American shad | . 100 | 57 | 315 | 116 | 3644/4935 |
| Clupea paliasi | Pacific herring | 140 | 57 | 262 | 103 | 3441/4935 |
| Engraulidae |  |  |  |  |  |  |
| Engraulis mordax | Northern anchovy | 29 | 57 | 238 | 105 | 3434/4006 |
| Argentinidae |  |  |  |  |  |  |
| Argentina sialis | Pacific argentine | 27 | 63 | 283 | 196 | 3443/3855 |
| Osmeridae |  |  |  |  |  |  |
| Osmeridae unidentified | Smelt unidentified | 4 | 59 | 137 | 84 | 4624/4857 |
| Allosmerus elongatus | Whitebait smelt | 20 | 60 | 218 | 88 | 3824/4914 |
| Hypomesus pretiosus | Surf smelt | 26 | 84 | 185 | 116 | 3434/3814 |
| Thaleichthys pacificus | Euachon. | 222 | 60 | 333 | 141 | 3436/4935 |
| Salomonidae |  |  |  |  |  |  |
| Oncorhymehus kisutch | Coho salmon | 3 | 110 | 333 | 190 | 4126/4823 |
| Oncorhynchus tshawytscha | Chinook salmon | 92 | 57. | 238 | 102 | 3527/4914 |
| Sternoptychidae ${ }^{\text {b }}$ |  |  |  |  |  |  |
| Sternoptychidae unidentified | Hatchetfish unidentified ${ }^{\text {b }}$ | 1 | 221 | 221 | 221 | 4244/4244 |
| Stomi idae |  |  |  |  |  |  |
| Stomiidae unidentified | Viperfish unidentified | 1 | 247 | 247 | 247 | 4254/4254 |

Table 2.--Continued.

| Family and Species* | Common Name* | $\begin{gathered} \text { Frequency } \\ \text { of } \\ \text { occurrence } \end{gathered}$ | Min. depth (m) | Max. depth (m) | Mean depth (m) | Latitude range S/N (ddrm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symodontidae |  |  |  |  |  |  |
| Synodus lucioceps | California lizardfish | 2 | 55. | 62 | 58 | 3450/3645 |
| Myctophidae |  |  |  |  |  |  |
| Myctophidae unidentified | Lanternfish unidentified | 11 | 137 | 348 | 244 | 4205/4824 |
| Tarletonbeania crenularis | Blue lanternfish | 2 | 227 | 293 | 260 | 4534/4554 |
| Gadidae |  |  |  |  |  |  |
| Gadus macrocephalus | Pacific cod | 108 | 57 | 315 | 148 | 4054/4935 |
| Microgadus proximus | Pacific tomeod | 61 | 59 | 150 | 81 | 3754/4935 |
| Theragra chal cogramma | Walleye pollack | 55 | 59 | 333 | 150 | 4354/4934 |
| Merlucciidae ${ }^{\text {a }}$ |  |  |  |  |  |  |
| Merluccius productus | Pacific hake | 409 | 57 | 357 | 151 | $3434 / 4935$ |
| 1 |  |  |  |  |  |  |
| Ophidiidae |  | . |  |  |  |  |
| Chilara taylori | Spotted cusk-eel | 21. | 62 | 271 | 136 | 3515/4619 |

## Batrachoididae

| Porichthys notatus | Plainfin midshipman | 87 | 55 | 238 | 94 | $3436 / 4855$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Scomberesocidae
Cololabis saira
$\begin{array}{llllllll}\text { Pacific saury } & 128 & 128 & 128 & 4559 / 4559\end{array}$

Trachipteridae
Trachipterus altivelis
King-of-the-salmon
327
327 3944/3944

Scorpaenidae

| Scorpaenidae unidentified | Rockfish unidentified | 22 | 55 | 311 | 162 | 3450/4824 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Scopaene quttate | California scorpionfish | 1 | 62 | 62 | 62 | 3457/3457 |
| Sebastes aleutianus | Rougheye rockfish | 57 | 106 | 351 | 186 | 3834/4913 |
| Sebastes alutus | Pacfic ocean perch | 75 | 124 | 329 | 201 | 4044/4934 |
| Sebastes auriculatus | Brown rockfish | 7 | 60 | 75 | 69. | 3659/3814 |
| Sebastes babcocki | Redbanded rockfish | 79 | 113 | 357 | 222 | 3555/4913 |
| Sebastes brevispinis | Silvergray rockfish | 28 | 128 | 241 | 171 | 4425/4935 |

Table 2 .--Continued.

| Family and Species* | Cormon Mame ${ }^{\text {a }}$ | Frequency of occurrence | Min. depth (m) | Max. depth (m) | Mean depth (m) | Latitude range S/M (ddnm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Scorpaenidse (cont.) |  |  |  |  |  |  |
| Sebastes caurinus | Copper rockfish | 13 | 55 | 102 | 76 | 3450/3855 |
| Sebastes chlorostictus | Greenspotted rockfish | 22 | 57 | 320 | 153 | 3434/4414 |
| Sebastes constellatus | Starry rockfish | 1 | 115 | 115 | 115 | 3755/3755 |
| Sebastes crameri | Darkblotched rockfish | 200 | 60 | 357 | 174 | 3434/4925 |
| Sebastes dalli | Calico rockfish | 1. | 62 | 62 | 62 | 3457/3457 |
| Sebastes diploproa | Splitnose rockfish | 103 | 59 | 357 | 230 | 3434/4923 |
| Sebestes elongatus | Greenstriped rockfish | 234 | 57 | 351 | 155. | 3441/4934 |
| Sebastes entomelas | Widow rockfish | 41 | 71 | 311 | 168 | 3436/4923 |
| Sebastes flavidus | Yellowtail rockfish | 76 | 57 | 192 | 134 | 3654/4935 |
| Sebastes goodei | Chilipepper | 111 | 55 | 320 | 138 | 3434/4619 |
| Sebastes helvomaculatus | Rosethorn rockfish | 76 | 73 | 329 | 180 | 3645/4926 |
| Sebastes hopkinsi | Squarespot rockfish | 2 | 57 | 106 | 81 | 3436/3449 |
| Sebastes jordani | Shortbelly rockfish | . 103 | 57 | 320 | 138 | 3434/4906 |
| Sebastes Lentiginosus | Freckled rockfish | 1 | 311 | 311 | 311 | 3436/3436 |
| Sebastes levis | Cowcod | 24 | 93 | 234 | 148 | 3441/4334 |
| Sebastes maliger | Ouillback rockfish | 3 | 57 | 88 | 72 | 4304/4856 |
| Sebastes melanops | Black rockfish | 2 | 66 | 146 | 106 | 4734/4810 |
| Sebastes miniatus | Vermilion rockfish | 9 | 73 | 320 | 167 | 3436/3739 |
| Sebastes mystinus | Blue rockfish | 1 | 73 | 73 | 73 | 3739/3739 |
| Sebastes ovalis | Speckled rockfish | 1 | 102 | 102 | 102 | 3736/3756 |
| Sebastes paucispinis | Bocaccio | 98 | 55 | 311 | 144 | 3436/4935 |
| Sebastes pinniger | Canary rockfish | 114 | 57 | 315 | 148 | 3436/4934 |
| Sebastes proriger | Redstripe rockfish | 57 | 88 | 283 | 171 | 3903/4926 |
| Sebastes reedi | Yellownouth rockfish | 10 | 128 | 241 | 178 | 4305/4913 |
| Sebastes rosenblatti | Greenblotched rockfish | 4 | 102 | 238 | 144 | 3449/3734 |
| Sebastes ruberrimus | Yelloweye rockfish | 42 | 57 | 201 | 142 | 3729/4926 |
| Sebastes rubrivinctus | Flag rockfish | 1 | 106 | 106 | 106 | 3654/3654 |
| Sebastes rufus | Bank rockfish | 7 | 62 | 353 | 240 . | 3436/4335 |
| Sebastes saxicola | Stripetail rockfish | 142 | 57 | 357 | 157 | 3434/4814 |
| Sebastes semicinctus | Halfbanded rockfish | 23 | 57 | 319 | 109 | 3436/4734 |
| Sebastes milsoni | Pygmy rockfish | 37 | 104 | 207 | 147 | 3746/4926 |
| Sebastes zacentrus | Sharpchin rockfish | 103 | 73 | 351. | 188 | 3436/4934 |
| Sebastolobus alascanus | Shortspine thornyhead | 134 | 60 | 357 | 215 | 3434/4923 |

Table 2.--Continued.

| Family and Species* | Cormon . Name | Frequency of occurrence | Min. depth (m) | Max. depth (m) | Mean depth (m) | Latitude range S/N (ddhm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Anoploponatidae |  |  |  |  |  |  |
| Anoplopoma fimbria | Sablefish | 369 | 55 | 357 | 150 | 3434/4935 |
| Hexagrammidae |  |  | - |  |  |  |
| Hexagrammidae unidentified | Greenting unidentified | 1 | 68 | 68 | 68 | 4904/4904 |
| Hexagrammos decagrammus | Kelp greenling | 5 | 57 | 123 | 88 | 3739/4856 |
| Ophiodon elongatus | Lingeod | 255 | 55 | 315 | 128 | 3436/4935 |
| $\underline{\text { Zaniolepis frenata }}$ | Shortspine combfish | 1 | 132 | 132 | 132 | 3520/3520 |
| Zaniolepis Latipinnis | Longspine combish | 26 | 57 | 238 | 99 | 3501/3915 |
|  |  |  |  |  | . |  |
| Cottidae |  |  |  |  |  |  |
| Cottidae unidentified | Sculpin unidentified | 4 | 60 | 293 | 168 | 3834/4544 |
| Hemilepidotus spinosus | Brown lrish lord | 2 | 73 | 106 | 90 | 3739/4304 |
| Icelinus filamentosus | Threadfin sculpin | 73 | 71 | 315 | 167 | 3535/4924 |
| Leptocottus armatus | Pacific staghorn sculpin | 2 | 62 | 234 | 148 | 3645/4543 |
| Scorpaenichthys marmoratus | Cabezon | 1. | 71 | 71 | 71 | 4304/4304 |
| Agonidae |  |  |  |  |  |  |
| Agonidae unidentified | Poacher unidentified | 4 | 130 | 293 | 214 | 3834/4906 |
| Agonopsis nulsa | Northern spearnose poacher | 3 | 157 | 179 | 168 | 4534/4759 |
| Bathyagonus nigripinnis | Blackfin poacher | 1 | 229 | 229 | 229 | 4523/4523 |
| Bathyagonus pentacanthus | Bigeye poacher | 1 | 238 | 238 | 238 | 4624/4624 |
| Odontoprxis trispinosa | Pygny poacher | 1 | 168 | 168 | 168 | 4509/4509 |
| Podothecus acipenserinus | Sturgeon poacher | 5 | 59 | 194 | 109 | 4414/4906 |
| Xeneretmus Latifrons | Blacktip poacher | 22 | 115 | 238 | 170 | 3806/4754 |
|  |  | , |  |  |  |  |
| Cyclopteridae |  |  |  |  |  |  |
| Cyclopteridae unidentified | Snailfish unidentified | 4 | 108 | 289 | 221 | 3854/4255 |
| Careproctus mel anurus | Blacktail smailfish | 4 | 157 | 357 | 283 | 3714/4906 |
| Carangidae |  |  |  |  |  |  |
| Irachurus symmetricus | Jack mackerel | 64 | 59 | 214 | 107 | 3644/4800 |
|  |  |  |  | - |  |  |
| Sciaenidae |  |  |  |  |  |  |
| Genyonemus Lineatus | White croaker | 53 | 55 | 238 | 85 | 3436/3824 |

Table 2.--Continued.

| Family and Species* | Common Mane | Frequency of occurrence | Min. depth (m) | Max' depth (m). | Mean depth (m) | Latitude range S/N (ddrm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Embiotocidae |  |  |  |  |  |  |
| Cymatogaster aggregata | Shiner perch | 15 | 57 | 88 | 68 | 3446/4856 |
| Zolembius rosaceus | Pink seaperch | 88 | 55 | 238 | 94 | 3436/3954. |
| Bathymasteridae |  |  |  |  |  |  |
| Bathymaster signatus | Seacher | 1 | 168 | 168 | 168 | 4759/4759 |
|  |  |  |  | . |  |  |
| Zoarcidae |  | . |  |  |  |  |
| Zoarcidae unidentified | Eelpout unidentified | 6 | 80 | 353 | 204 | 4234/4631 |
| Lycodes brevipes | Shortfin eelpout | 5 | 119 | 174 | 139 | 3934/4546 |
| Lycodes cortezianus | Bigfin eelpout | 121 | 60 | 357 | 180 | 3437/4914 |
| Lycodes diapterus | Black eelpout | 15 | 143 | 351 | 268. | 3456/4809 |
| Lycodopsis pacifica | Blackbelly eelpout | 42 | 79 | 315 | 139 | 3456/4758 |
| Cryptacanthodidae |  |  |  |  |  |  |
| Cryptacanthodes giganteus | Giant wrymouth | 4 | 135 | 176 | 154 | 4335/4707 |
| Anarhichadidae |  |  |  |  |  |  |
| Anarrhichthys ocellatus | Wolf-eel | 2 | 82 | 117 | 98 | $3544 / 3954$ |
| Icosteidae |  |  |  |  | . |  |
| Icosteus aenigmaticus | Ragfish | 1 | 337 | 337 | 337 | 4434/4434 |
| ' $\cdot$ ' ${ }^{\text {. }}$ |  |  |  |  |  |  |
| Scombridae |  |  |  |  |  |  |
| Scomber japonicus | Chub mackerel | 37 | 59 | 315 | 113 | 3457/4725 |
| Stromateidae |  |  |  |  |  |  |
| Peprilus simillimus | Pacific pompano | 45 | 55 | 311 | 90 | 3436/3754 |
| $\cdots$ | - |  |  |  | $\because$ |  |
| Bothidae |  |  |  |  |  |  |
| Citharichthys sordidus | Pacific sanddab | 269 | 55 | 294 | 100 | 3434/4935 |
| Paralichthys californicus | California halibut | 1 | 55 | 55 | 55 | 3450/3450 |
| Pleuronectidae |  |  |  |  |  |  |
| Atheresthes stomias | Arrowtooth flounder | 288 | 59 | 357 | 150 | 3714/4935 |

Table $2 .-$ Continued.


Table 3.--Inventory of biological data by species, depth stratum; and International North Pacific Fisheries Commission statistical area collected during the 1989 west coast triennial groundfish survey ( $A=$ otoliths, $W=$ individual weight, $G=$ girth or width, $M=$ maturity, $S$, stomach observations, $T=$ tagged fish, $L=$ length, $P=$ pathology data).

| Species name | Conception area |  | Monterey area |  | Eureka area |  | Columbia area |  | Vancouver area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 55-183m | 184-366m |
| Arrowtooth | -- | -- | $2 亡$ | 1L | 69L | 69L | 3044L; 5 2W; | 540L; 42S; | 5022L; | 620L; 120W; |
| flounder |  |  |  |  |  |  | 114S;24P; | 10P;5G. | 237W;169S | 16S; 56G |
| -.. |  |  |  |  |  |  | 119G |  |  |  |
| Butter sole | -- ${ }^{+}$ | -- . | $\cdots-$ | .-- | - | -- | -- | -- | 26L. | -- |
| $\cdots$ |  |  |  |  |  |  |  |  |  |  |
| Curlfin sole | -- | -- | 9L | -- | -- | -- | -- | -- | - - | -- |
| Dover sole | 324L; 42S. | 404L; | 3121 L | 1325L; | 758L; 68W; | 812L; | 4978L; | 710L;94S; | 2680L;95W; | 885 L ; |
|  |  | 36G;10S | 276S;25M; | 71W | 88G; 45S; | 62G;90S; | 73G; | 10P | 22G:316S | 142W;79G; |
|  |  |  | 25W; 10P |  | 27 P | 35 P | 387 S |  |  | 30 S |
| English sole | 99L; 10G | -- | 5S54L; | 147L | 344L;51W; | 2L | 4411 L ; | 128L | 2416L; | 28L |
| - |  |  | 43W; 82G |  | 60G |  | 63W; 60G |  | 115W;99G |  |
| Flathead sole | -- | -- | -- | -- | -- | -- | 135L | -- | 287L | 8L |
| Pacific halibut | 2L | -- | 11L | -- | 11L | 111 | 100L | 22L | 123L | 19L |
| Pacific | 964L; 30G | - | 3597:58G | 20L | 467L; 152G | -- | 2554 L ; | - | 1861L | -- |
| sanddab |  |  |  |  |  |  | 60G |  |  |  |
| Petrale sole | 44 L | 6L | 846L;52G | 22L | 35L; 14Wi. | . -- | 413L;70G | 2L | 250L; 60W; | 2L |
|  |  |  | - |  | 25G |  |  |  | 18G |  |
| Rex sole | 325L | 371 L | 5279L; | 1036L | 561L; | 986 L ; | 12508L; | 1272L | 3284! | 737L; 25W; |
|  |  |  | 90G;70P: | $\because$ | 66W;76G | 51W; 51G; | 99G;7P |  | -119W;21G | 25G. |
|  |  |  | 90W | $\therefore$ |  | 1 P |  |  |  |  |
| Rock sole | -- | -- | 80 L | -- | -- - | --. | 55L | -- | 193L; 59W | - |
| Sand sole | - | -- | 2L; 2G | -- | -- | , -- |  | . -- | -- | . . --' |
| Slender sole | - | -- | 3L | - | -- | * 1L | -. | - | - | -- |
| Shortspine | -- | 68L; 15 S | --: | 351L;51P | 151 | 283L | 189L: | 711L; | 51L; 16S | 191L; 46 S |
| thornyhead |  |  |  | 15 S |  |  | 17G; 48S | 76G; 60S |  |  |
| Bank rockfish | -- | : 24 L | -- | $\therefore 4 \mathrm{~L}$ | -- | - -- | - | -' | -- | -- |
| Black rockfish | -- | - | $\pm$ | - -- | - | -- | -- | -- | - 2 L | -- |
| Blue rockfish* | -- | -- | 14 L | -- | -- | -- | -- | -- | -- | -- |

Table 3.--Continued.



Table 3.--Continued.

| Species name | Conception area |  | Monterey area |  | Eureka area |  | Columbia area |  | Vancouver area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 55-183m | 184-366m |
| American shad | -- | -- | 6L | -- | -- | -- | -- | -- | - | -- |
| Chinook, salmon | - | -- | 9L | -- | 2L | -- | 3L | - | -- | -- |
| Chub mackerel | -- | - | 95L | -- . | -- | -- | 35L | - -- | -- | -- |
| Jack mackerel | -- | -- | 174L | -- | 5 P | --- | 64 L | -- | 311. | -- |
| Lingcod | 65L | -- | 303L; 2W | 6L | 19L | 16L; 3W; | 135L; | 37L; 18G | 324L; 81W; | 16L; 7W; |
|  |  | . |  |  |  | 3G | 15W;32G |  | 15G:193A. | 7A |
| Pacific cod | -- | -- | -- | -- | -- | -- | 23L;23G | 4L; 16G | 130L; 36G | 27L; 17G |
| Pacific hake | 167L; 19S; | 1769L; | 8244 L ; | 3462 L ; | 1456L; 4W; | 1817L; 8W; | 15041L; | 3156 L ; | 2789L;97W; | 900L; |
|  | 13A | 46Ş;34A; | 218W: | 126 W ; | 30S;29A | 76G;9A | 245W; 209G; | 158W; 27G; | 139S; 6M; | 5W; 5G; |
|  |  | 61P | 164S;114M; | 126M; 74A |  |  | 508S;37M; | 61S;100M; | 153A ${ }^{\text {- }}$ | 35S; 46A |
|  |  |  | 196A; 66P | 105S; |  |  | 318A; 89P | 55A; 10P |  |  |
| Pacific herring | I | -- | 464L | -- | -- | -- | 315L | -- | -- | -- |
| Pacific pompano | 130L | -- | 821 | -- | -- | -- | -- | - | -- | -- |
| Pacific tomcod | -- | -- | 75L | -- | 31L | -- | -- | -- | -- | -- |
| Sablefish | 122L; 31T; | 155L; 2 T; | 814 L ; | 265L; | 157L̇; 6T; | 623L;17G; | 1642L; | 917L; | 735L; | 184L; 27W: |
|  | 17S; 8M; | 15S; 36 Mi | 42W; 95T; | 20S:54M; | 135; 3A | 77A | 2W; 32T; | 67T:81G; | 66W:179S; | 3G; 405 ; |
|  | BA | 36A | 79S;55M; | - 98A |  |  | 108G; | 41S;15A | 37M; 124A | 27M; 31A |
|  |  |  | 76A; 25 P |  | - |  | 97S;157A |  |  |  |
| Shiner perch | -- | $\cdots$ | 2L | -- | :-- | -- | -- . | -- | - | -- |
| Walleye pollock | . -- | -- | - | -- | -- | -- | 13L | - | 575L | 219L |
| White croaker | -- | -- | 595L | -- | -- | -- | -- | -- | -- | -- |

Table 4. .. Dominant fish species observed during the 1989 triennial west coast groudfish survey; ranked by (PuE (kg/hatrawled) for the entire survey area.


Table 5 , .. Dominant fish species observed during the 1989 triennial west coast groundfish survey, ranked by CPUE (kg/ha trawled) in the United States.

| United States ( 55.183 m ) |  |  |  |  | United States (184-366 m) |  |  |  | United States (55-366 m) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\cdot$ | total effort <br> total mean C | 1336.3 ha CPUE for fis | sh 207:51 | kg/ha | total effort total mean CPU | 366.6 ha UE for fis | sh 135.18 | kg/ha | total effort total mean C | 1702.9 h CPUE for fi | ish 191.91 | kg/ha |
| Rank | Species | Mean CPUE (kg/ha) | Variance | Cumulative proportion | Species M | Mean CPUE (kg/ha) | Variance | Cumulative proportion | Species | Mean CPUE (kg/ha) | Variance | Cumulative proportion |
| 1 | Pacific hake | 91.59 | 209.78 | 0.441 | Pacific hake | 49.07 | 124.11 | 0.363 | Pacific hake | 82.42 | 134.80 | 0.429 |
| 2 | Spiny dogfish | 21.36 | 88.26 | 0.544 | Shortbelly rockfish | 19.41 | 150.41 | 0.507 | Spiny dogfish | 17.23 | 54.30 | 0.519 |
| 3 | Jack mackerel | 14.43 | 24.20 | 0.614 | Sablefish | 9.96 | 10.80 | 0.580 | Jack mackerel | 11.32 | 14.89 | 0.578 |
| 4 | Pacific sanddab | 10.15 | 11.18 | 0.663 | Splitnose rockfish | 6.78 | 1.80 | 0.630 | Sablefish | 8.61 | 12.58 | 0.623 |
| 5 | Sablefish | 8.24 | 19.63 | 0.702 | Dover sole | 6.71 | 1.21 | 0.680 | Pacific sanddab | 7.98 | 6.87 | 0.665 |
| 6 | Bocaccio | 7.00 | 23.92 | 0.736 | Pacific ocean perch | 6.03 | 14.53 | 0.725 | Bocaccio | 5.66 | 14.72 | 0.694 |
| 7 | Yellowtail rockfish | 5.30 | 6.62 | 0.762 | Stripetail rockfish | 4.44 | 3.44 | 0.758 | Shortbelly rockfish | 4.89 | 7.10 | 0.720 |
| 8 | Chilipepper | 4.81 | 2.08 | 0.785 | Arrowtooth flounder | 3.99 | 0.41 | 0.787 | Chilipepper | 4.60 | 1.37 | 0.744 - |
| 9 | English sole | 3.66 | 0.18 | 0.803 | Chilipepper | 3.83 | 2.08 | 0.815 | Yellowtail rockfish | 4.16 | 4.07 | 0.765 |
| 10 | Pacific herring | 3.50 | 3.55 | 0.819 | Canary rockfish | 2.98 | 8.30 | 0.837 | Dover sole | 4:10 | 0.12 | 0.787 |
| 11 | Arrowtooth flounder | 3.48 | 1.42 | 0.836 | Rex sole | 2.73 | 0.22 | 0.858 | Arrowtooth flounder | 3.59 | 0.89 | 0.805 |
| 12 | Dover sole | 3.39 | 0.10 | 0.853 | Darkblotched rockfish | 2.43 | 0.31 | 0.876 | Rex sole | 3.03 | 0.05 | 0.821 |
| 13 | Rex sole | 3.12 | 0.06 | 0.868 | Spiny dogfish | 2.21 | 0.28 | 0.892 | English sole | 2.95 | 0.11 | 0.837 |
| 14 | Widow rockfish | 2.77 | 1.85 | 0.881 | Walleye pollock | 1.72 | 0.91 | 0.905 | Stripetoil rockfish | 2.77 | 0.47 | 0.851 |
| 15 | Chub mackerel | 2.50 | 1.14 | 0.893 | Sharpchin rockfish | 1.71 | 0.59 | 0.917 | Pacific herring | 2.74 | 2.18 | 0.865 |
| 16 | Stripetail rockfish | 2.30 | 0.51 | 0.904 | Shortspine thornyhead | 1.68 | 0.07. | 0.930 | Hidow rockfish | 2.18 | 1.14 | 0.877 |
| 17 | Lingcod | 1.89 | 0.23 | 0.913 | Longnose skate | 1.20 | 0.13 | 0.939 | Chub mackerel | 1.96 | 0.70 | 0.887 |
| 18 | White croaker | 1.67 | 0.56 | 0.921 | Lingeod | 1.16 | 0.26 | 0.947 | Canary rockfish | 1.85 | 0.51 | 0.896 |
| 19 | Canary rockfish | 1.54 | 0.20 | 0.929 | White croaker | 1.05 | 1.11 | 0.955 | Lingcod | 1.73 | 0.16 | 0.906 |
| 20 | American shad | 1.51 | 0.55 | 0.936 | Pacific halibut | 0.82 | 0.13 | 0.961 | White croaker | 1.54 | 0.40 | 0.914 |

 Fisheries Commission Conception area.

| Rank | Conception (55-183 m) |  |  |  | Conception (184-366 m) |  |  |  | Conception (55-366 m) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | - total mean CPUE for fish $147.14 \mathrm{~kg} / \mathrm{h}$ |  |  |  | total effort 32.0 ha total mean CPUE for $\mathbf{f i s h} 55.74 \mathrm{~kg} / \mathrm{ha}$ |  |  |  | total effort 103.0 ha total mean CPUE for fish |  |  | $105.97 \mathrm{~kg} / \mathrm{ha}$ |  |
|  | Species | Mean CPUE (kg/ha) | Variance | Cumulative proportion | Species : Me | Mean CPUE (kg/ha) | Variance | Cumulative proportion | Species | Mean CPUE (kg/ha) |  | riance | Cumulative proportion |
| 1 | Bocaccio | 66.36 | 4271:21 | 0.451 | Pacific hake | 14.85 | 44.25 | 0.266 | Bocaccio. | 36.47 |  | 289.86 | 0.344 |
| 2 | Pacific sanddab | 20.52 | 103.74 | 0.590 | Dover sole | 11.33 | 58.54 | 0.470 | Pacific sanddab | 11.30 |  | 31.33 | 0.451 |
| 3 | Widow rockfish | 18.17 | 330.05 | 0.714 | Splitnose rockfish | 6.28 | 9.12 | 0.582 | Uidow rockfish | 10.00 |  | 99.67 | 0.545 |
| 4 | Chilipepper | 14.02 | 33.37 | 0.809 | Stripetail rockfish | 5.01 | 23.69 | 0.672 | Chilipepper | 9.15 |  | 10.64 | 0.631 |
| 5 | Squarespot rockfish | 6.57 | 38.44 | 0.854 | Rex sole | 4.29 | 8.66 | 0.749 | Pacific hake | 6.91 |  | 8.99 | 0.697 |
| 6 | Vermilion rockfish | 3.63 | 6.33 | 0.879 | Shortbelly rockfish | 3.53 | 12.36 | 0.813 | Dover sole | 5.57 |  | 11.93 | 0.749 |
| 7 | Stripetail rockfish | 2.99 | 3.02 | 0.899 | Sablefish | 3.29 | 1.66 | 0.872 | Stripetail rockfish | 3.90 |  | 5.72 | 0.786 |
| 8 | Pacific pompano | 1.95 | 1.73 | 0.912 | Chilipepper | 3.21 | 2.75 | 0.929 | Squarespot rockfish | 3.61 |  | 11.61 | 0.820 |
| 9 | Plainfin midshipman | 1.63 | 0.22 | 0.923 | Shortspine thornyhead | 0.61 | 0.23 | 0.940 | Splitnose rockfish | 2.83 |  | 1.85 | 0.847 |
| 10 | White croaker | 1.43 | 0.54 | 0.933 | Bank rockfish | 0.58 | 0.34 | 0.951 | Rex sole | 2.25 |  | 1.77 | 0.868 |
| 11 | Spiny dogfish | 1.26 | 0.45 | 0.941 | Surf smelt | 0.55 | 0.30 | 0.960 | Vermilion rockfish | 2.08 |  | 1.92 | 0.888 |
| 12 | Dover sole | 0.84 | 0.15 | 0.947 | Petrale sole | 0.45 | 0.09 | 0.968 | Shortbelly rockfish | 2.02 |  | 2.54 | 0.907 |
| 13 | Sablefish | 0.82 | 0.07 | 0.953 | Longnose skate | 0.29 | 0.04 | 0.974 | Sablefish | 1.93 |  | 0.36 | 0.925 |
| 14 | Shortbelly rockfish. | 0.78 | 0.12 | 0.958 | Spotted ratfish | 0.21 | 0.01 | 0.977 | Pacific pompano | 1.08 |  | 0.52 | 0.935 |
| 15 | Pacific electric ray | 0.63 | 0.07 | 0.962 | Spiny dogfish | 0.19 | 0.01 | 0.981 | Plainfin midshlpman | 0.90 |  | 0.07 | 0.944 |
| 16 | Petrale sole* | 0.58 | 0.03 | 0.966 | Vermilion rockfish | 0.18 | 0.02 | 0.984 | White croaker | 0.78 |  | 0.16 | 0.951 |
| 17 | Rex sole | 0.58 | 0.03 | 0.970 | Pacific electric ray | 0.16 | 0.03 | 0.987 | Spiny dogfish | 0.78 |  | 0.14 | 0.958 |
| 18 | English sole | 0.45 | 0.03 | 0.973 | Slender sole | 0.13 | 0.01 | 0.989 | Petrale sole | 0.52 |  | 0.03 | 0.963 |
| 19 | Pacific hake | 0.41 | 0.04 | 0.976 | Bigfin eelpout | 0.12 | 0.01 | 0.992 | Bank rockfish | 0.49 |  | 0.11 | 0.968 |
| 20 | Bank rockfish | 0.39 | 0.15 | 0.979 | California skate | 0.12 | 0.01 | 0.994 | Pacific electric ray | 0.42 |  | 0.03 | 0.972 |

Table 7. .. Dominant fish species observed during the 1989 triennial west coast groundfish survey, ranked by CPUE (kg/ha trawled) in the lnternational North Pacific Fisheries Commission Monterey area.

|  | Monterey (55-183 m) |  |  |  | Monterey (184-366 m) |  |  |  | Monterey (55-366 m) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | total effort 371.6 he total mean CPUE for fish. $220.89 \mathrm{~kg} /$ |  |  |  | total effort 86.6 ha total mean CPUE for fish $294.37 \mathrm{~kg} / \mathrm{h}$ |  |  |  | total effort 458.3 ha total mean CPUE for fish $233.92 \mathrm{~kg} /$ |  |  |  |
| Rank | Species . M | Mean CPUE (kg/ha) | Variance | Cumulative proportion | Species | Mean CPUE (kg/ha) | Variance | Cumulative proportion | Species Me | Mean CPUE (kg/ha) | Variance | Cumulative proportion |
| 1 | Pacific hake | 70.54 | 475.79 | - 0.319 | Pacific hake | 118.83 | 1737.25 | 0.404 | Pacific hake | 79.10 | 376.63 | 0.338 |
| 2 | Spiny dogfish | 54.54 | 1129.64 | 0.566 | Shortbelly rockfish | 87.52 | 462.60 | 0.701 | Spiny dogfish | 45.61 | 764.53 | 0.533 |
| 3 | Sablefish | 16.70 | 223.77 | 0.642 | Splitnose rockfish | 17.87 | 26.35 | 0.762 | Shortbelly rockfish | 18.06 | 15.94 | 0.610 |
| 4 | Chilipepper | 15.45 | 26.72 | 0.712 | Stripetail rockfish | 15.46 | 54.12 | 0.814 | Chilipepper | 15.39 | 19.26 | 0.676 |
| 5 | Jack mackerel | 11.18 | 34.20 | 0.762 | Chilipepper | 15.12 | 37.43 | 0.866 | Sablefish | 14.54 | 151.48 | 0.738 |
| 6 | Pacific sanddab | 7.04 | 0.62 | 0.794 | Dover sole | 10.61 | 6.71 | 0.902 | Jack mackerel | 9.19 | 23.14 | 0.778 |
| 7 | Stripetail rockfish | 6.49 | 5.94 | 0.824 | White croaker | 4.87 | 23.75 | 0.918 | Stripetail rockfish | 8.08 | 5.72 | 0.812 |
| 8 | White croaker | 5.84 | 7.32 | 0.850 | Sablefish | 4.56 | 1.54 | 0.934 | Pacific sanddab | 5.87 | 0.42 | 0.837 |
| 9 | English sole | 5.30 | 0.67 | 0.874 | Spiny dogfish | 4.19 | 3.24 | 0.948 | White croaker | 5.67 | 5.70 | 0.861 |
| 10 | Shortbelly rockfish | 3.08 | 2.05 | 0.888 | Bocaccio | 3.25 | 4.29 | 0.959 | English sole | 4.55 | 0.46 | 0.881 |
| 11 | Pacific herring | 3.00 | 1.62 | 0.902 | Rex sole | 3.17 | 1.29 | 0.970 | Dover sole | 3.99 | 0.33 | 0.898 |
| 12 | Dover sole | 2.57 | 0.18 | 0.913 | Shortspine tharnyhead | 1.25 | 0.14 | 0.974 | Splitnose rockfish | 3.18 | 0.83 | 0.912 |
| 13 | Rex sole | 2.54 | 0.07 | 0.925 | Darkblotched rockfish | 1.08 | 0.19 | 0.978 | Rex sole | 2.65 | 0.09 | 0.923 |
| 14 | Lingcod | 2.23 | 0.30 | 0.935 | English sole | 1.07 | 0.41 | 0.981 | Pacific herring | 2.47 | 1.09 | 0.933 |
| 15 | Plainfin midshipman | 1.73 | 0.23 | 0.943 | Spotted ratfish | 0.86 | 0.22 | 0.984 | Lingcod | 1.87 | 0.20 | 0.941 |
| 16 | Petrale sole | 1.34 | 0.04 | 0.949 | Sharpchin rockfish | 0.78 | 0.38 | 0.987 | Bocaccio | 1.49 | 0.39 | 0.948 |
| 17 | Greenstriped rockfish | 1.30 | 0.09 | 0.955 | Longnose skate | 0.57 | 0.16 | 0.989 | Plainfin midshipman | 1.45 | 0.16 | 0.954 |
| 18 | Bocaccio | 1.11 | 0.37 | 0.960 | Bigfin eelpout | 0.46 | 0.04 | 0.990 | Petrale sole | 1.14 | 0.03 | 0.959 |
| 19 | Yellowtait rockfish | 0.95 | 0.40 | 0.964 | Pacific sanddab | 0.40 | 0.12 | 0.992 | Greenstriped rockfish | h 1.12 | 0.06 | 0.964 |
| 20 | Widow rockfish | 0.83 | 0.56 | 0.968 | Greenstriped rockfish | 0.27 | 0.01 | 0.993 | Yellowtail rockfish | 0.78 | 0.27 | 0.967 |

 Fisheries Commission Eureka area.

| Eureka (55-183 m) |  |  |  |  | Eureka (184-366 m) |  |  |  | Eureka (55-366 m) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | total effort <br> total mean CPU | 134.9 ha UE for | sh 118.85 | kg/ha | $\begin{aligned} & \text { total effort } \\ & \text { total mean CPU } \end{aligned}$ | 58.8 ha UE for fi | sh 104.05 | kg/ha | total effort <br> total mean CPU | $\begin{aligned} & 193.7 \mathrm{~h} \\ & \text { PUE for } \end{aligned}$ | $\text { ish } 115.7$ | $\mathbf{k g / h a}$ |
| Rank | Species | Mean CPUE (kg/ha) | Variance | Cumulative proportion | Species | Mean CPUE (kg/ha) | Variance | Cumulative proportion | Species Me | Mean CPUE (kg/ha) | Variance | Cumulative proportion |
| 1 | Pacific hake | 43.16 | 397.17 | 0.363 | Sablefish | 32.29 | 453.94 | 0.310 | Pacific hake | 39.51 | 251.42 | 0.341 |
| 2 | Jack mackerel | 33.29 | 155.54 | 0.643 | Pacific hake | 25.63 | 56.93 | 0.557 | Jack mackerel | 26.36 | 97.49 | 0.569 |
| 3 | Chub mackerel | 8.28 | 13.20 | 0.713 | Darkblotched rockfish | 9.49 | 15.02 | 0.648 | Sablefish | 7.41 | 19.85 | 0.633 |
| 4 | Widow rockfish | 4.84 | 22.79 | 0.754 | Dover sole | 8.78 | 4.96 | 0.732 | Chub mackerel | 6.55 | 8.27 | 0.690 |
| 5 | Dover sole | 4.84 | - 2.24 | 0.794 | Splitnose rockfish | 6.31 | 3.67 | 0.793 | Dover sole | 5.66 | 1.62 | 0.738 |
| 6 | Spiny dogfish | 4.05 | 10.42 | 0.828 | Rex sole | 3.90 | 1.87 | 0.830 | Widow rockfish | 3.83 | 14.28 | 0.772 |
| 7 | Pacific sanddab | 3.45 | 1.33 | 0.857 | Stripetail rockfish | 2.97 | 3.59 | 0.859 | Spiny dogfish | 3.59 | 6.64 | 0.803 |
| 8 | Stripetall rockfish | 3.22 | 3.62 | 0.885 | Pacific ocean perch | 2.33 | 0.86 | 0.881 | Stripetail rockfish | 3.17 | 2.42 | 0.830 |
| 9 | Chinook salmon | 1.88 | 0.37 | 0.900 | Pacific halibut | 1.89 | 0.54 | 0.899 | Pacific sanddab | 2.73 | 0.83 | 0.854 |
| 10 | Rex sole | 1.25 | 0.08 | 0.911 | Longnose skate | 1.81 | 0.75 | 0.917 | Darkblotched rockfish | h 2.22 | 0.68 | 0.872 |
| 11 | English sole | 1.11 | 0.08 | 0.920 | Spiny dogitish | 1.80 | 2.46 | 0.934 | Rex sole | 1.80 | 0.13 | 0.888 |
| 12 | Longnose skate | 1.00 | 0.16 | 0.929 | Shortspine thornythead | 1.52 | 0.19 | 0.949 | Chinook salmon | 1.49 | 0.23 | 0.901 |
| 13 | Yellowtail rockfish | 0.95 | 0.44 | 0.937 | Lingcod | 1.03 | 0.39 | 0.959 | Splitnose rockfish | 1.32 | 0.16 | 0.913 |
| 14 | Lingcod | 0.88 | 0.10 | 0.944 | Arrowtooth flounder | 0.94 | 0.21 | 0.968 | Longnose skate | 1.17 | 0.13 | 0.923 |
| 15 | Sablefish . $\quad \therefore$ | 0.87 | 0.26 | 0.951 | Chilipepper | 0.51 | 0.26 | 0.973 | Lingcod | 0.92 | 0.08 | 0.931 |
| 16 | Sharpchin rockfish | 0.76 | 0.58 | 0.958 | Greenstriped rockfish | - 0.40 | 0.04 | 0.976 | English sole | 0.88 | 0.05 | 0.938 |
| 17 | Greenstriped rockfish | 0.64 | 0.17 | 0.963 | Redbanded rockfish | 0.28 | 0.01 | 0.979 | Pacific halibut | 0.85 | 0.08 | 0.946 |
| 18 | Pacific halibut | 0.58 | 0.10 | 0.968 | Eulachon | 0.27 | 0.03 | 0.982 | Yellowtail rockfish | 0.75 | 0.27 | 0.952 |
| 19 | Petrale sole | 0.55 | 0.02 | 0.973 | Spotted ratfish | 0.25 | 0.03 | 0.984 | Sharpchin rockfish | 0.62 | 0.36 | 0.957 |
| 20. | Eulachon | 0.51 | 0.07 | 0.977 | Bocaccio | 0.23 | 0.01 | 0.986 | Greenstriped rockfish | h 0.59 | 0.11 | 0.962 |

 Fisheries Commission Columbia area.

Columbia (55-183 m)
total effort 602.8 ha total mean CPUE for fish $214.87 \mathrm{~kg} / \mathrm{ha}$

| Rank | Species | Mean CPUE (kg/ha) | Variance | Cumulative proportion |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Pacific hake | 134.23 | 755.18 | 0.625 |
| 2 | Jack mackerel | 15.73 | 90.00 | 0.698 |
| 3 | Pacific sanddab | 14.58 | 51.14 | 0.766 |
| 4 | Sablefish , | 6.70 | 11.91 | 0.797 |
| 5 | Yellowtail rockfish | 4.75 | 5.86 | 0.819 |
| 6 | Rex sole | 4.49 | 0.22 | 0.840 |
| 7 | Pacific herring | 4.03 | 15.27 | 0.859 |
| 8 | Dover sole | 3.89 | 0.22 | 0.877 |
| 9 | English sole | 3.54 | 0.53 | 0.893 |
| 10 | Chub mackerel | 3.11 | 4.41 | 0.908 |
| 11 | American shad | 2.70 | 2.50 | 0.920 |
| 12 | Arrowtooth flounder. | 2.57 | 0.12 | 0.932 |
| 13 | Lingeod | 1.96 | 0.95 | 0.941 |
| 14 | Spiny dogfish | 1.70 | 0.10 | 0.949 |
| 15 | Paclfic halibut | 1.43 | 0.16 | 0.956 |
| 16 | Greenstriped rockfish | 1.12 | 0.07 | 0.961 |
| 17 | Petrale sole | 1.00 | 0.21 | 0.966 |
| 18 | Canary rockfish | 0.96 | 0.21 | 0.970 |
| 19 | Redstripe rockfish | 0.85 | 0.24 | 0.974 |
| 20 | Sharpchin rockfish | 0.76 | 0.18 | 0.978 |

Columbie (184-366m)
total effort 146.0 ha
total mean CPUE for fish $86.23 \mathrm{~kg} / \mathrm{ha}$

| Species | Mean CPUE <br> (kg/ha) | Variance | Cumulative <br> Proportion |
| :--- | ---: | ---: | ---: |
| Pacific hake | 37.07 | 215.01 | 0.430 |
| Sablefish | 10.15 | 24.29 | 0.548 |
| Canary rockfish | 7.30 | 50.68 | 0.632 |
| Arrowtooth flounder | 4.07 | 0.76 | 0.679 |
| Splitnose rockfish | 3.37 | 2.20 | 0.718 |
| Pacific ocean perch | 3.30 | 4.11 | 0.757 |
| Sharpchin rockfish | 3.03 | 2.91 | 0.792 |
| Dover sole | 2.25 | 0.16 | 0.818 |
| Lingcod | 2.12 | 1.43 | 0.843 |
| Shortspine thornyhead | 2.00 | 0.30 | 0.866 |
| Rex sole | 1.84 | 0.14 | 0.887 |
| Darkblotched rockfish | 1.84 | 0.45 | 0.908 |
| Pacific hal ibut | 1.24 | 0.64 | 0.923 |
| Greenstriped rockfish | 1.21 | 0.17 | 0.937 |
| Longnose skate | 1.12 | 0.36 | 0.950 |
| Spotted ratfish | 0.79 | 0.37 | 0.959 |
| Stripetail rockfish | 0.52 | 0.09 | 0.965 |
| Chilipepper | 0.35 | 0.12 | 0.969 |
| Rosethorn rockfish | 0.34 | 0.03 | 0.973 |
| Spiny dogfish | 0.31 | 0.01 | 0.977 |

Columbia (55-366 m)
total effort 748.8 ha
total mean CPUE for fish $188.47 \mathrm{~kg} / \mathrm{ha}$

| Species | Mean CPUE (kg/ha) | Variance | Cumulative proportion |
| :---: | :---: | :---: | :---: |
| Pacific hake | 114.29 | 486.10 | 0.606 |
| Jack mackerel | 12.51 | 56.85 | 0.673 |
| Jack mackerel | 12.51 | 56.85 | 0.673 |
| Pacific sanddab | 11.59 | 32.31 | 0.734 |
| Sablefish | 7.40 | 8.54 | 0.774 |
| Rex sole | 3.94 | 0.15 | 0.795 |
| Yellowtail rockfish | 3.79 | 3.70 | 0.815 |
| Dover sole | 3.55 | 0.15 | 0.833 |
| Paclific herring | 3.20 | 9.65 | 0.850 |
| Arrowtooth flounder | 2.88 | 0.11 | 0.866 |
| English sole | 2.87 | 0.34 | 0.881 |
| Chub mackerel | 2.47 | 2.79 | 0.894 |
| Canary rockfish | 2.26 | 2.27 | 0.906 |
| American shad | 2.17 | 1.58 | 0.918 |
| Lingcod | 1.99 | 0.66 | 0.928 |
| Spiny dogfish | 1.41 | 0.06 | 0.936 |
| Pacific halibut | 1.39 | 0.13 | 0.943 |
| Sharpchin rockfish | 1.23 | 0.23 | 0.950 |
| Greenstriped rockfish | h 1.14 | 0.05 | 0.956 |
| Petrale sole | 0.81 | 0.13 | 0.960 |
| Longnose skate | 0.75 | 0.05 | 0.964 |

 International North Pacific Fisheries Commission Vancouver area.

USVancouver (55:183 m)

## total effort 155.9 ha total mean CPUE for fish $263.57 \mathrm{~kg} / \mathrm{ha}$

| Rank | Species | Mean CPUE (kg/ha) | Variance | Cumulative proportion | Species M | Mean CPUE (kg/ha) | Variance | Cumulative proportion |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Spiny dogfish | 47.99 | 196.16 | 0.182 | Pacific ocean perch | 33.82 | 849.25 | 0.265 |
| 2 | Paclfic hake | 45.09 | 577.31 | 0.353 | Pacific hake | 21.46 | 58.78 | 0.433 |
| 3 | Bocaccio | 41.76 | 1732.96 | 0.512 | Arrowtooth flounder | 16.61 | 15.98 | 0.563 |
| 4 | Yelloutail rockfish | 26.13 | 490.75 | 0.611 | Walleye pollock | 13.46 | 56.51 | 0.668 |
| 5 | Arrowtooth flounder | 21.59 | 128.52 | 0.693 | Dover sole | 9.69 | 8.03 | 0.744 |
| 6 | Widow rockfish | 11.05 | 97.81 | 0.735 | Spiny dogfish | 7.38 | 6.05 | 0.802 |
| 7 | Redstripe rockfish | 10.48 | 24.82 | 0.774 | Sablefish | 3.71 | 1.34 | 0.831 |
| 8 | Canary rockfish | 8.11 | 13.22 | 0.805 | Longnose skate | 2.78 | 2.77 | 0.853 |
| 9 | Pacific herring | 7.68 | 13.60 | 0.834 | Rex sole | 2.67 | 0.27 | 0.874 |
| 10 | Walleye pollock | 4.19 | 7.76 | 0.850 | Shortspine thornyhead | d 2.36 | 0.35 | 0.892 |
| 11 | English sole | 3.87 | 1.44 | 0.865 | Darkblotched rockfish | 2.20 | 1.08 | 0.909 |
| 12 | Sablefish | 3.82 | 4.21 | 0.879 | Sharpchin rockfish | 1.81 | 1.71 | 0.924 |
| 13 | Pacific halibut | 3.16 | 0.92 | 0.891 | Spotted ratfish | 1.61 | 0.29 | 0.936 |
| 14 | Pacific sanddab | 3.01 | 0.78 | 0.903 | Roughere rockfish | 1.33 | 0.40 | 0.947 |
| 15 | Dover sole | 2.49 | 0.51 | 0.912 | Redstripe rockfish | 1.25 | 0.69 | 0.956 |
| 16 | Lingeod | 2.33 | 0.44 | 0.921 | Pacific cod | 1.04 | 0.19 | 0.965 |
| 17 | Silvergray rockfish | 2.02 | 1.13 | 0.929 | Flathead sole | 0.88 | 0.42 | 0.972 |
| 18 | Pacific tomcod | 1.90 | 1.28 | 0.936 | Lingcod | 0.80 | 0.44 | 0.978 |
| 19 | Sharpchin rockfish | 1.70 | 0.50 | 0.942 | Pacific halibut | 0.51 | 0.11 | 0.982 |
| 20 | Greenstriped rockfish | - 1.64 | 0.42 | 0.949 | Splitnose rockfish | 0.48 | 0.20 | 0.986 |

total effort 43.2 he total mean CPUE for fish $127.72 \mathrm{~kg} / \mathrm{ha}$

USVancouver (55-366 m)
total effort 199.1 ha total mean CPUE for fish $229.42 \mathrm{~kg} / \mathrm{ha}$

$$
\text { total mean Cpue for fish } \angle \angle 9.4<\mathrm{kg} / \mathrm{ni}
$$

| Species | Mean CPUE (kg/ha) | Variance | Cumulative proportion |
| :---: | :---: | :---: | :---: |
| Pacific hake | 39.15 | 327.27 | 0.171 |
| Spiny dogitish | 37.78 | 110.32 | 0.335 |
| Bocaccio | 31.27 | 971.26 | 0.472 |
| Arrowtooth flounder | 20.34 | 73.04 | 0.560 |
| Yellowtail rockfish | 19.57 | 275.05 | 0.646 |
| Pacific ocean perch | 8.87 | 53.70 | 0.684 |
| Widow rockfish | 8.28 | 54.82 | 0.720 |
| Redstripe rockfish | 8.16 | 13.96 | 0.756 |
| Walleye pollock | 6.52 | 7.92 | 0.784 |
| Canary rockfish | 6.09 | 7.41 | 0.811 |
| Pacific herring | 5.75 | 7.62 | 0.836 |
| Dover sole | 4.30 | 0.79 | 0.855 |
| Sablefish | 3.79 | 2.45 | 0.871 |
| English sole | 2.93 | 0.81 | 0.884 |
| Pacific halibut | 2.50 | 0.52 | 0.895 |
| Pacific senddab | 2.26 | 0.44 | 0.905 |
| Lingcod | 1.94 | 0.27 | 0.913 |
| Rex sole | 1.84 | 0.15 | 0.921 |
| Sharpehln rockfish | 1.73 | 0.39 | 0.929 |
| Longnose skate | 1.65 | 0.32 | 0.936 |

 International North Pacific Fisheries Commission Vancouver area

| - | CanVancouver (55-183 m) |  |  |  | CanVancouver (184-366 m) |  |  |  | CanVancouver (55-366 m) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . | total effort <br> total mean CP | 221.4 he PUE for fis | sh 334.90 | kg/ha | total effort <br> total mean CPU | 29.6 ha UE for fish | sh 544.69 | kg/ha | total effort total mean | 251.0 ha CPUE for | ish 356: | $0 \mathrm{~kg} / \mathrm{ha}$ |
| Rank | Species | Mean CPUE (kg/ha) | Variance | Cumulative proportion | Species | Mean CPUE (kg/ha) | Variance | Cumulative proportion | Species | Mean CPUE (kg/ha) | Variance | Cumulative proportion |
| 1 | Spiny dogfish | 188.74 | 3309.54 | 0.564 | Pacific hake | 222.75 | 49448.12 | 0.409 | Spiny dogfish | 174.69 | 2682.94 | 0.490 |
| 2 | Arrowtooth flounder | 43.55 | 166.77 | 0.694 | Pacific ocean perch | 59.13 | 477.05 | 0.518 | Arrowtooth flounder | 43.74 | 139.65 | 0.612 |
| 3 | Lingcod | 11.40 | 11.37 | 0.728 | Spiny dogfish | 54.11 | 2604.31 | 0.617 | Pacific hake | 28.26 | 543.80 | 0.691 |
| 4 | Sablefish | 11.24 | 16.28 | 0.761 | Sharpchin rockfish | 45.52 | 1629.65 | 0.700 | Sablefish | 11.17 | 13.32 | 0.723 |
| 5 | Pacific herring | 9.57 | 68.09 | 0.790 | Arrowtooth flounder | 45.40 | 540.06 | 0.784 | Lingeod | 10.71 | 9.20 | 0.753 |
| 6 | Dover sole | 9.43 | 5.43 | 0.818 | Walleye pollock | 22.57 | 502.47 | 0.825 | Dover sole | 9.79 | 4.62 | 0.780 |
| 7 | Pàific cod | 7.89 | 3.65 | 0.842 | Dover sole | 12.91 | 24.66 | 0.849 | Pacific herring | 8.58 | 54.62 | 0.804 + |
| 8 | Redstripe rockfish | 7.21 | 22.85 | 0.863 | Silvergray rockfish | 12.37 | 143.61 | 0.872 | Redstripe rockfish | 7.44 | 19.16 | 0.825 の |
| 9 | Cenary rockfish | 6.66 | 13.65 | 0.883 | Splitnose rockfish | 10.97 | 62.33 | 0.892 | Pacific cod | 7.35 | 2.97 | 0.846 |
| 10 | Pacific hake | 5.59 | 5.97 | 0.900 | Sablefish | 10.61 | 24.56 | 0.911 | Pacific ocean perch | 6.48 | 5.22 | 0.864 |
| 11 | Rex sole | 4.82 | 0.85 | 0.914 | Redstripe rockfish | 9.45 | 76.19 | 0.929 | Canary rockfish | 6.07 | 10.96 | 0.881 |
| 12 | Yellowtail rockfish | 3.72 | 6.39 | 0.925 | Pacific halibut | 7.61 | 21.13 | 0.943 | Sharpchin rockfish | 5.53 | 17.94 | 0.896 |
| 13 | Walleye pollock | 3.05 | 1.84 | 0.934 | Spotted ratfish | 7.55 | 43.66 | 0.956 | Walleye pollock | 5.08 | 6.96 | 0.911 |
| 14 | Pacific halibut | 2.74 | 0.96 | 0.942 | Lingcod | 4.79 | 7.91 | 0.965 | Rex sole | 4.68 | 0.70 | 0.924 |
| 15 | English sole | 1.98 | 0.16 | 0.948 | Longnose skate | 3.81 | 5.21 | 0.972 | Yelloutail rockfish | 3.33 | 5.13 | 0.933 |
| 16 | Silvergray rockfish | 1.92 | 0.75 | 0.954 | Rex sole | 3.50 | 1.61 | 0.979 | Pacific halibut | 3.24 | 1.00 | 0.942 |
| 17 | Pacific sanddab | 1.86 | 0.53 | 0.960 | Pacific cod | 2.69 | 4.24 | 0.984 | Silvergray rockfish | 3.01 | 2.16 | 0.951 |
| 18 | Bocaccio | 1.55 | 0.55 | 0.964 | Rosethorn rockfish | 1.64 | 1.65 | 0.987 | Spotted ratfish | 1.98 | 0.66 | 0.956 |
| 19 | Greenstriped rockfish | h 1.48 | 0.21 | 0.969 | Redbanded rockfish | 1.58 | 0.60 | 0.989 | English sole | 1.78 | 0.13 | 0.961 |
| 20 | Longnose skate | 1.37 | 0.11 | 0.973 | Shortspine thornyhead | 1.17 | 0.25 | 0.992 | Pacific sanddab | 1.67 | 0.42 | 0.966 |

 Fisheries Commission Vancouver area.


$$
\begin{gathered}
\text { Table } 13 \text {.--Estimates of fish biomass from the } 1989 \text { west coast groundfish survey by INPFC area for the } \\
\text { combined depth }(55-366 \mathrm{~m}) \text { Confidence intervals are expressed as a percentage of the point } \\
\text { estimate. T denotes trace value. Differences in totals result from rounding. }
\end{gathered}
$$

| Taxon | Estimated total biomess (t) and 90\% confidence intorval |  | Estimated biommas (t) by INPFC subaren and 90\% conlidence interval |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Conception | Monterer | Euroka | Columbia | US-Vancouver | Con-Vancouvar | Vancouvor |
| Cartiligonaus |  |  |  |  |  |  |  |  |  |
| . Spiny dogfigh | $198.234 \pm 61$ | 17.8 | $167 \pm 72$ | $51,843 \pm 103$ | $1.852 \pm 121$ | $3.404 \pm 24$ | 40,937 $\pm 90$ | $100.231 \pm 73$ | 141,168 $\pm 61$ |
| Skates and raya | $7.081 \pm 18$ | 0.6 | $189 \pm 49$ | $978 \pm 28$ | $852 \pm 40$ | $2,428 \pm 38$ | - $9337 \pm 41$ | $1.699 \pm 31$ | $2,830 \pm 27$ |
| Othors | $4.233 \pm 35$ | 0.4 | $114 \pm 45$ | $848 \pm 87$ | $71 \pm 55$ | $600 \pm 58$ | $902 \pm 58$ | $1.693 \pm 67$ | $2.598 \pm 49$ |
| Total cartilagenous | 209,548 $\pm 48$ | 18.8 | $470 \pm 32$ | $53.467 \pm 99$ | $2.779 \pm 81$ | $6.435 \pm 21$ | $42.770 \pm 88$ | $103,623 \pm 71$ | 148,399 $\pm 59$ |
| Flatish ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |
| Arrowtooth flounder | $54,893 \pm 34$ | 4.9 | -- | $8 \pm 100$ | $237 \pm 44$ | 6,977 $\pm 18$ | 11,295 $\pm 69$ | $37,377 \pm 45$ | $48,671 \pm 39$ |
| Dover sole | $28,829 \pm 15$ | 2.4 | $1.095 \pm 114$ | 4,840 $\pm 25$ | 2,923 $\pm 38$ | $6.905 \pm 18$ | $1,928 \pm 23$ | 9,078 $\pm 34$ | $11.000 \pm 30$ |
| English solo | $14,370 \pm 17$ | 1.3 | $82 \pm 82$ | $5.131 \pm 25$ | $450 \pm 43$ | $5,806 \pm 32$ | $1,302 \pm 48$ | $1.792 \pm 37$ | $3.095 \pm 31$ |
| Pacific halibut | $7.475 \pm 27$ | 0.7 | - | $200 \pm 68$ | $441 \pm 50$ | 2,924 $\pm 42$ | $1,080 \pm 29$ | $2.830 \pm 48$ | $3.910 \pm 38$ |
| Pacific eanddab | $35,889 \pm 53$ | 3.2 | $2.312 \pm 79$ | 6,764 $\pm 18$ | $1,412 \pm 50$ | 22,851 $\pm 82$ | $1.081 \pm 39$ | $1,468 \pm 83$ | $2.529 \pm 42$ |
| Petrala molo | $4,358 \pm 30$ | 0.4 | $138 \pm 45$ | $1.289 \pm 24$ | $225 \pm 43$ | $1.587 \pm 77$ | $230 \pm 24$ | $929 \pm 34$ | 1,159 $\pm 29$ |
| Rex sole | $17.288 \pm 11$ | 1.0 | $452 \pm 107$ | $3.044 \pm 19$ | $931 \pm 34$ | $7.600 \pm 18$ | $1.103 \pm 24$ | $4.150 \pm 29$ | $5.259 \pm 24$ |
| Others | $4.118 \pm 21$ | 0.4 | $37 \pm 65$ | $516 \pm 27$ | $38 \pm 39$ | $938 \pm 30$ | $530 \pm 32$ | $2,050 \pm 38$ | $2.588 \pm 31$ |
| Total flatish | $184,898 \pm .17$ | 14.8 | $4.117 \pm 59$ | $21.572 \pm 13$ | 0.682 $\pm 25$ | . $54.428 \pm 37$ | $18,629 \pm 39$ | 69,687 $\pm 29$ | $78.218 \pm 25$ |

Rockliah

| Shortapin | $2.019 \pm 22$ | 0.2 | $54 \pm 148$ | $259 \pm 68$ | $219 \pm 45$ | $980 \pm 39$ | $283 \pm 42$ | $224 \pm 43$ | $506 \pm 33$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bocaccio | $28,383 \pm 109$ | 2.4 | $7.534 \pm 155$ | $2.022 \pm 78$ | $41 \pm 78$ | $59 \pm 80$ | $14,320 \pm 168$ | $2,387 \pm 90$ | 16,708 $\pm 168$ |
| Canary | 13,186 $\pm 55$ | 1.2 | $2 \pm 200$ | $732 \pm 73$ | $124 \pm 73$ | $3,614 \pm 112$ | $3,838 \pm 61$ | 4,876 $\pm 97$ | $8.713 \pm 63$ |

## Table 13. --Continued.



> Table 14.--Estimates of fish biomass from the 1989 west coast groundfish survey by INPFC area for the shallow depth stratum (55-183 m). Confidence intervale are expressed as a percentage of the point estimate. T denotes trace value. Differences in totals result from rounding.

| Taxon | Estimeted biomase (t) and 90\% conlidence interval | \% of shallow fish biomass | Eatimated biomess (t) by INPFC subarea and 90\% confidence interval |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Concoption | Monterey | Euraka | Columbia | US-Vencouver | Can-Vancouvar | Vancouver |
|  |  |  |  |  | - | , - |  |  |  |
| Cartilagenous |  |  |  |  |  |  |  |  |  |
| Spiny dogfish | 191.43i $\pm 52$ | 20.4 | $150 \pm 80$ | $50.800 \pm 104$ | 1,659 $\pm 134$. | 3,274 $\pm 25$ | 39,239 $\pm 84$ | 90،309 $\pm 70$ | 135,648 $\pm .63$ |
| Skates and rays | $5,350 \pm 20$ | 0.0 | $134 \pm 65$ | $794 \pm 30$ | $822 \pm 48$ | 1,908 $\pm 44$ | $629 \pm 61$ | 1,270 $\pm 33$ | 1,899 $\pm 29$ |
| Others | $2,805 \pm 38$ | 0.3 | $79 \pm 57$ | $877 \pm 106$ | $35 \pm 60$ | $341 \pm 35$ | $691 \pm 73$ | $1.082 \pm 68$ | $1.673 \pm 47$ |
| Total cartilagenoua | 199,594 $\pm 50$. | 21.3 | $384 \pm 38$ | $52.271 \pm 101$ | $2.316 \pm 98$ | $5.623 \pm 23$ | 40,459 $\pm 91$ | $98,601 \pm 74$ | 139,120 562 |

Flatfish

| Arrowtooth flounder | $\mathbf{4 6 , 8 3 7} \pm \mathbf{4 0}$ | 5:0 | -- | $7 \pm 100$ | $135 \pm 45$ | $4.339 \pm 21$ | $8.277 \pm 79$ | $34.079 \pm 48$ | 42,356 $\pm 44$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dover sola | 19,081 $\pm 19$ | 2.0 | $93 \pm 75$ | $2.399 \pm 27$ | $1,879 \pm 52$ | $6,089 \pm 20$ | $988 \pm 31$ | $7.653 \pm 40$ | $8.541 \pm 37$ |
| English solo | $14.001 \pm 18$ | 1.5 | $82 \pm 82$ | $4.915 \pm 28$ | $452 \pm 44$ | $5,482 \pm 33$ | $1,282 \pm 49$ | $1.788 \pm 37$ | $3,088 \pm 31$ |
| Pacific halibut | $6.053 \pm 29$ | 0.6 | $\cdots$ | $200 \pm 68$ | $237 \pm 90$ | $2.425 \pm 46$ | $872 \pm 31$ | $2.319 \pm 54$ | $3.191 \pm 42$ |
| Pacific sanddab | $35.782 \pm 63$ | 3.8 | $2.307 \pm 79$ | $6.682 \pm 18$ | $1.412 \pm 50$ | 22,851 $\pm 82$ | $1.081 \pm 39$ | $1.468 \pm 63$ | $2,529 \pm 42$ |
| Petrale sole | $4.223 \pm 31$ | 0.4 | $98 \pm 42$. | $1.223 \pm 25$ | $223 \pm 43$ | $1.652 \pm 78$ | $220 \pm 25$ | $907 \pm 34$ | $1.127 \pm 29$ |
| Rex sols | $14.423 \pm 13$ | 1.5 | $72 \pm 44$ | $2,385 \pm 18$ | $512 \pm 38$ | $6,862 \pm 18$ | $774 \pm 33$ | $3.839 \pm 31$ | $4,613 \pm 27$ |
| Others | $3.794 \pm 22$ | 0.4 | - $25 \pm 72$ | $462 \pm 29$ | $35 \pm 43$ | $883 \pm 31$ | $430 \pm 38$ | $1.959+37$ | $2.389 \pm 32$ |
| Total Ilatfish | $144.193 \pm 19$ | 15.4 | $\mathbf{2 , 6 7 8} \pm 89$ | 18,253 $\pm 14$ | $4.985 \pm 31$ | $\mathbf{6 0 . 4 6 2} \pm 40$ | 13,904 $\pm 51$ | $53,810 \pm 32$ | $67.814 \pm 28$ |

Rockfish


Table 14.--Continued.

| Taxon | Estimated biomess ( $t$ ) and 90\% confidence interval |  | Estimated biomess (t) by INPFC subarea and 90\% confidonce interval |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Concoption | Monteroy | Eureka | Columbia | Us-Vancouver | Can-Vancouver | Vancouvor |
|  |  |  |  | : |  |  |  | : |  |
| Rockfish (cont.) |  |  |  |  |  |  |  |  |  |
| Chilipeppor | $18.248 \pm 60$ | 1.7 | $1.578 \pm 08$ | $14.489 \pm 50$ | $198 \pm 180$ | T | - | -- | - |
| Darkblotched | 948 $\pm 25$ | 0.1 | 1 | $52 \pm 65$ | $127 \pm 105$ | 677 $\pm 28$ | $63 \pm 43$. | $29 \pm 62$ | $92 \pm 38$ |
| Greenatriped | $5.008 \pm 23$ | 0.5 | $3 \pm 100$ | $1.214 \pm 38$ | $201 \pm 110$ | $1.735 \pm 39$ | $622 \pm 61$ | $1.173 \pm 49$ | $1.795 \pm 40$ |
| Pacilic ocean perch | $575 \pm 53$ | 0.1 | - | - | .- | $98 \pm 122$ | $102 \pm 99$ | $378 \pm 68$ | $479 \pm 59$ |
| Redatripe | $10.937 \pm 65$ | 1.2 | $\cdots$ | O $\pm 187$ | $\therefore 1 \pm 200$ | $1,301 \pm 97$ | $3.848 \pm 75$ | $5.782 \pm 105$ | $9.629 \pm 73$ |
| Sharpchin | $2.941 \pm 48$ | 0.3 | T | $114 \pm 89$ | $312 \pm 188$ | $1.187 \pm 92$ | $\theta 15 \pm 60$ | $712 \pm 83$ | $1,327 \pm 57$ |
| Shortbolly | $3.037 \pm 73$ | 0.3 | $216 \pm 99$ | $2.775 \pm 80$ | $2 \pm 100$ | $18 \pm 83$ | $1 \pm 200$ | $25 \pm 150$ | $27 \pm 148$ |
| Silvergray | $2.293 \pm 58$ | 0.2 |  | .- | -- | $24 \pm 121$ | $754 \pm 82$ | $1,515 \pm 73$ | $2.269 \pm 58$ |
| Splitinose | $31 \pm 52$ | T | $\cdots$ | $8 \pm 138$ | $4 \pm 100$ | $14 \pm 71$ | $1 \pm 100$ | $4 \pm 150$ | $5 \pm 120$ |
| Stripotail | $7.780 \pm 61$ | 0.8 | $390 \pm 81$ | $6.012 \pm 03$ | $1.318 \pm 100$ | $42 \pm 100$ | $11 \pm 109$ | $1 \pm 100$ | $12 \pm 108$ |
| Widow | $9.538 \pm 83$ | 1.0 | $1.898 \pm 172$ | $1.000 \pm 123$ | $\cdot 1.979 \pm 168$ | $587 \pm 118$. | $3.790 \pm 151$ | $304 \pm 152$ | $4.096 \pm 151$ |
| Yollowtail | $21.321 \pm 73$ | 2.3 | .- | $880 \pm 112$ | $387 \pm 118$ | $7.043 \pm 85$ | $9,438 \pm 138$ | $3.673 \pm 94$ | $13,011 \pm 109$ |
| Others | $5,082 \pm 41$ | 0.5 | $1.147 \pm 134$ | $1.048 \pm 67$ | $75 \pm 98$ | $750 \pm 44$ | $990 \pm 60$ | $1,072 \pm 60$ | $2.062 \pm 45$ |
| Total rocklish | $121,988 \pm 34$ | 13.0 | $12.773 \pm 129$ | $29.674 \pm 39$ | $4,855 \pm 92$ | $15,157 \pm 49$ - | $37.787 \pm 81$ | $21.782 \pm 58$ | $\underline{69,529 \pm 60}$ |
| Other fish |  |  |  |  |  |  |  |  |  |
| Lingeod | 14,977 $\pm 35$ | 1.6 | $45 \pm 76$ | $2.078 \pm 41$ | $382 \pm 80$ | $2.941 \pm 80$ | $1.616 \pm 44$ | $7.937 \pm 54$ | $9,553 \pm 48$ |
| Pacific hake | $314.817 \pm 20$ | 33.6 | $48 \pm 74$ | $65,701 \pm 51$ | $17.657 \pm 78$ | $209,148 \pm 33$ | $14.988 \pm 80$ | $7.279 \pm 62$ | $22.288 \pm 40$ |
| Soblefiah | $35,552 \pm 72$ | 3.8 | $92 \pm 53$ | $15.555 . \pm 151$ | $354 \pm 99$ | $10,609 \pm 84$ | $2,201 \pm 81$ | $8.681 \pm 77$ | $8.941 \pm 64$ |
| Orhore | -108.982 $\pm 32$ | 11.4 | $957 \pm 51$ | $22.757 \pm 48$ | $18.088 \pm 57$ | $42.940 \pm 69$ | $4.948 \pm 37$ | $17.292 \pm 63$ | $22.241 \pm 52$ |
| Total fish | 938,102. 17 | 100.0 | $18.965 \pm 88$ | 208,288 $\pm 37$ | $48.618 \pm 39$ | $338.778 \pm 24$ | $116.942 \pm 43$ | $213.522 \pm 41$ | 329,464 $\pm 32$ |

```
Table 15.--Estimates of fish biomass from the 1989 west coast groundfish survey by INPFC area for the deep
    stratum (184-366 m). Confidence intervals are expressed as a percentage of the point estimate.
    T denotes trace, value. Differences in totals result from rounding.
```

| Taxon | Estimated biomase (t) and 90\% confidence, interval | \% of doap fish biomass | Estimated biomasa (t) by INPFC subarea and 90\% confidence intorval |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Conception | Monterey | Eur oka | Columbia | US-Vancouvar | Cen-Vancouvar | Vancouver |
| - | - |  |  |  | . | , |  | - |  |
| Certilagenous |  |  |  |  |  |  |  |  |  |
| Spiny doglish | 6,803 $\pm 120$ | 3.9 | $17 \pm 88$ | $843 \pm 7{ }^{-}$ | $194 \pm 71$ | $130 \pm 42$ | 1,698 $\pm 114$ | $3.922 \pm 168$ | 6,020 $\pm 144$ |
| Skates and raya | $1.723 \pm 38$ | 1.0 | $55 \pm 69$ | $184 \pm 77$ | $230 \pm 70$ | $518 \pm 80$ | - $308 \pm 78$ | $429 \pm 79$ | $737 \pm$ © |
| Others | 1,428 $\pm 77$ | 0.8 | $35 \pm 77$ | $169 \pm 98$ | $38 \pm 84$ | $285 \pm 127$ | $312 \pm 80$ | $811 \pm 130$ | $823 \pm 114$ |
| Total cartilagonous | $9,954 \pm 95$ | 6.7 | $107 \pm 52$ | $1.198 \pm 57$ | $459 \pm 71$ | $912 \pm 50$ | $2,317 \pm 98$ | $4,982 \pm 145$ | $7.280 \pm 130$ |
| Flatish |  |  |  |  |  |  |  |  |  |
| Arrowtooth flounder | $8.057 \pm 49$ | 4.8 | -* | $1 \pm 300$ | $102 \pm 35$ | $1,638 \pm 37$ | $3.018 \pm 48$ | $3.298 \pm 87$ | 0.315 $\pm 62$ |
| Dover aole | $7.548 \pm 25$ | 4.3 | $1,003 \pm 125$ | $2.240 \pm 44$ | $945 \pm 44$ | $898 \pm 30$ | $940 \pm 37$ | $1.625 \pm 52$ | $2,465 \pm 43$ |
| English sole | $389 \pm 77$ | 0.2 | -- | $216 \pm 128$ | $3 \pm 100$ | $123 \pm 116$ | $20 \pm .110$ | $\theta \pm 117$ | $28 \pm 98$ |
| Pacific halibut | $1.422 \pm 05$ | 0.8 | $\cdots$ | - | $203 \pm 68$ | $499 \pm 112$ | $208 \pm 88$ | $611 \pm 114$ | $719 \pm 107$ |
| Pacific a anddab | $87 \pm 187$ | T | $6 \pm 180$ | $82 \pm 177$ | .. | -- | - -- | -- | - |
| Potrafo eole | $135 \pm 69$ | 0.1 | $40 \pm 123$ | - $46 \pm 115$ | $2 \pm 100$ | $15 \pm 100$ | $10 \pm 110$ | $22 \pm 145$ | - $32 \pm 134$ |
| Rex solo | $2.884 \pm 28$ | 1.6 | $380 \pm 127$ | $679 \pm 60$ | $419 \pm 82$ | $738 \pm 35$ | $330 \pm 27$ | $317 \pm 61$ | $646 \pm 34$ |
| Others | $322 \pm 81$ | 0.2 | $11 \pm 164$ | $54 \pm 48$ | $3 \pm 67$ | $50 \pm 67$ | $100 \pm 80$ | '98 $\pm 146$ | $197 \pm 97$ |
| Total flatfish | $20.803 \pm 22$ | 11.8 | $\mathbf{1 , 4 3 9} \pm 122$ | $3,319 \pm 37$ | 1,677 $\pm 41$ | $\mathbf{3 , 9 8 5} \pm 31$ | 4,025 $\pm 33$ | $6.776 \pm 62$ | $10.402 \pm 39$ |

## Rockfish

| Shortepine thornyhead | $1.081 \pm 26$ | 1.0 | $54 \pm 144$ | $258 \pm 58$ | $184 \pm 60$ | $800 \pm 47$ | $235 \pm 48$ | $170 \pm 49$ | $405 \pm 38$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bocaceio | $780 \pm 128$ | 0.4 | -- | 652 460 | $24 \pm 96$ | $28 \pm 139$ | $18 \pm 84$ | $68 \pm 88$ | $75 \pm 85$ |
| Canary | 2,854 $\pm 182$ | 1.6 | -- | $6 \pm 167$ | $0 \pm 167$ | $2.122 \pm 188$ | $853 \pm 185$ | $67 \pm 172$ | $720 \pm 169$ |

Table 15.--Continued.

| Taxon | Estimated biomese ( t ) and 90\% confidence interval | $\%$ of doop fish biomass | Estimated biomese (t) by INPFC subares and 90\% confidence interval |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Conception | Monterey | Euroka | Columbia | US-Vencouver | Cen-Vancouver | Vancouvor |
| - | - |  |  | . |  |  |  |  |  |
| Rockfish (cont.). |  |  |  |  |  |  |  |  |  |
| Chilipopper | $3.553 \pm 73$ | 2.0 | $754 \pm 112$ | $2,603 \pm 101$ | $65 \pm 175$ | $141 \pm 172$ | -- | . -- | -- |
| Darkblotchod | $2,294 \pm 39$ | 1.3 | $3 \pm 100$ | $216 \pm 72$ | $1.021 \pm 72$ | $801 . \pm 59$ | $150 \pm 59$ | $103 \pm 141$ | $263 \pm 80$ |
| Greonstriped | $702 \pm 42$. | 0.4 | - -- | $53 \pm 75$ | $43 \pm 88$ | $484 \pm 51$ | $74 \pm 82$ | $68 \pm 87$ | $142 \pm 70$ |
| Pacific ocean perch | $12.246 \pm 77$ | 7.0 | -- | -- | $251 \pm 69$ | $1,440 \pm 99$ | $7,617 \pm 109$ | $2.939 \pm 95$ | $10.558 \pm 89$ |
| Redstripe | $1,029 \pm 137$ | 0.6 | $\cdots$ | - -- | $6 \pm 183$ | $54 \pm 91$ | $332 \pm 108$ | $636 \pm 168$ | $888 \pm 145$ |
| Sharpchin | $6.577 \pm 117$ | 3.2 | $5 \pm 140$ | $152 \pm 145$ | $6 \pm 87$ | $1.173 \pm 99$ | $1.231 \pm 125$ | $3,010 \pm 164$ | $4.242 \pm 153$ |
| Shortbelly | $18.030 \pm 113$ | 10.3 | $9.638 \pm 177$ | 6.178 $\pm 116$ | $11 \pm 104$ | $3 \pm 100$ | -- | - | -- |
| Silvargray | $\underline{1.107 \pm 173}$ | 0.6 | - | -- | - - - | $28 \pm 116$ | $259 \pm 175$ | $822 \pm 178$ | $1.081 \pm 177$ |
| Splitnoso | $7,253 \pm 34$ | 4.1 | $628 \pm 78$ | $3,581 \pm 66$ | $679 \pm 63$ | $1.354 \pm 77$ | $280 \pm 111$ | $734 \pm 134$ | $1,014 \pm 127$ |
| Stripotail | $4.128 \pm 79$ | 2.4 | $1.132 \pm 125$ | $2,472 \pm 128$ | $319 \pm 112$ | $180 \pm 90$ | $24 \pm 188$ | T | $24 \pm 188$ |
| Widow | $\bigcirc 47 \pm 68$ | T | $3 \pm 133$ | $24 \pm 113$ | $\cdots$ | $10 \pm 90$ | $\cdots \pm 100$ | - $8 \pm 138$ | $11 \pm 127$ |
| Yellowt ${ }^{\text {il }}$ - | $14 \pm 64$ | T | - .-- | . -- | -- | $11 \pm 84$ | $3 \pm 67$ | $\cdots$ | $3 \pm 87$ |
| Others | - $977 \pm 35$ | 0.6 | $97 \pm 114$ | $69 \pm 62$ | $58 \pm 71$ | $202 \pm 68$ | - $248 \pm 50$ | - $305 \pm 70$ | $552 \pm 54$ |
| Totel rockfieh. | 62,272 $\pm 43$ | 35.6 | $12.511 \pm 156$ | $18.264 \pm 75$ | $2,643 \pm 43$ | $8,807 \pm 51$ | 11.128 $\pm 77$ | $8.818 \pm 81$ | $20,047 \pm 65$ |

Other fish

| Lingeod | 1,492 $\pm 82$ | 0.8 | -- | $39 \pm 103$ | $111 \pm 106$ | $760 \pm 92$ | $256 \pm 82$ | $325 \pm 110$ | $581 \pm 85$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pacific hake | $64,993 \pm 69$ | 37.0 | $1.310 \pm 84$ | $24.010 \pm 64$ | $2.758 \pm 52$ | 14,909 $\pm 67$ | $6,515 \pm 130$ | $15.486 \pm 174$ | $22.000 \pm 161$ |
| Sablefish | $10.380 \pm 61$ | 6.9 | $291 \pm 74$ | $947 \pm 49$ | $3.475 \pm 110$ | $4.111 \pm 84$ | $771 \pm 83$ | $785 \pm 80$ | 1,550 $\pm 64$ |
| Others | $5.679 \pm 72$ | 3.2 | $84 \pm 136$ | $1.199 \pm 190$ | $74 \pm 54$ | $310 \pm 48$ | $1.709 \pm 87$ | $2.323 \pm 117$ | $4,032 \pm 92$ |
| Total fish | 175,574 $\pm 32$ | 100.0 | $16.728 \pm 121$ | 48,976 $\pm 45$ | 11.198 $\pm 38$ | $\mathbf{3 3 , 7 7 6} \pm 35$ | $27.322 \pm 50$ | 38,676 $\pm 96$ | 65,897 74 |

```
Table 16.--Estimates of fish population numbers (x1000) from the 1989 west coast groundfish survey by
    INPFC area for the combined depth strata (55-366 m). Confidence intervals are expressed
    as a percentage of the point estimate. T denotes trace value. Differences in totals
    result from rounding.
```

| Taxan | Estimated total population and $90 \%$ confidonce interval | Eatimatod population numbors ( $\times 1000$ ) by INPFC subarea and 90\% confideince intervad |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Conception | Monteroy | Euraka | Columbia | US-Vancouver | Can-Vancouver | Vancouver |
| Cartilagenous |  |  |  |  |  |  |  |  |
| Spiny dogfish | $183.432 \pm 63$ | $165 \pm 65$ | $67.401 \pm 101$ | $2.430 \pm 118$ | $3.598 \pm 29$ | $32.850 \pm 98$ | $76,999 \pm 77$ | $109.848 \pm 84$ |
| Flatfish |  |  |  |  |  |  |  |  |
| Arrowtoath flounder | $48,791 \pm 20$. | -- | $22 \pm 84$ | $957 \pm 49$ | $12,087 \pm 21$ | $9.088 \pm 30$ | $26.638 \pm 32$ | 36,724 $\pm 28$ |
| Dover sole | $78.449 \pm 14$ | $3,772 \pm 100$ | 19,191 $\pm 23$ | $8,776 \pm 39$ | 22,295 $\pm 19$ | $4,570 \pm 23$ | $19.846 \pm 38$ | $24.416 \pm 33$ |
| English sole | $65.270 \pm 18$ | $269 \pm 63$ | $23.122 \pm 23$ | $1,931 \pm 42$ | $28.595 \pm 34$ | $4.581 \pm 60$ | $6.771 \pm 38$ | $11,352 \pm 33$ |
| Pacific halibut | $1.060 \pm 27$ | -- | $27 \pm 61$ | $50 \pm 61$ | $386 \pm 42$ | $178 \pm 30$ | $413 \pm 48$ | $591 \pm 38$ |
| Pacific sanddab | $257.008 \pm 38$ | $19.125 \pm 70$ | $63.410 \pm 18$ | $12.478 \pm 58$ | $142.330 \pm 68$ | $7.016 \pm 39$ | $12.648 \pm 70$ | $19.863 \pm 49$ |
| Petrale sole | $10,035 \pm 43$ | $213 \pm 40$ | $3,040 \pm 25$ | $697 \pm 39$ | $4,638 \pm 90$ | $379 \pm 28$ | $1.171 \pm 28$ | $1,549 \pm 24$ |
| Rox sole | $137.637 \pm 12$ | $3.259 \pm 89$ | $23,685 \pm 17$ | $\mathbf{9 , 2 7 4} \pm 34$ | $73.177 \pm 18$ | - $6,656 \pm 21$ | $21.687 \pm 26$ | 28,243 $\pm 22$ |

## Rockfieh

| Shortspine thornyhaed | $11.619 \pm 22$ | $244 \pm 147$ | $1.610 \pm 63$ | $1.381 \pm 35$ | $5.484 \pm 39$ | $1.689 \pm 62$ | $1.110 \pm 43$ | 2,800 $\pm 43$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bacaccio | 39,929 $\pm 131$ | $30,623 \pm 152$ | $5.819 \pm 97$ | $19 \pm 71$ | $16 \pm 90$ | $2.894 \pm 108$ | $557 \pm 83$ | $3.452 \pm 162$ |
| Canery | $8,943 \pm 52$ | $4 \pm 172$ | $1.083 \pm 83$ | $63 \pm 65$ | 2,859 $\pm 106$ | $2,206 \pm 62$ | $2.758 \pm 84$ | $4,965 \pm 56$ |
| Chilipepper | 66,792 $\pm 37$ | $25.443 \pm 63$ | 40,920 $\pm 43$ | $298 \pm 115$ | $131 \pm 165$ | -- | -- | - |
| Darkblotched | $15,826 \pm 19$ | $11 \pm 75$ | $900 \pm 48$ | $3,034 \pm 45$ | $10.215 \pm 24$ | $1.080 \pm 35$ | $385 \pm 74$ | $1.465 \pm 35$ |
| Greonstripod | 24,177 $\pm 19$ | $20 \pm 90$ | $\theta .676 \pm 34$ | $1.103 \pm 82$ | $9,917 \pm 31$ | $2.297 \pm 47$ | 4,265 $\pm 48$ | $6,562 \pm 37$ |
| Pacific ocean perch | $23,002 \pm 64$ | -- | - | $380 \pm 70$ | $2.800 \pm 88$ | $12.371 \pm 103$ | $7.351 \pm 65$ | $19.722 \pm 73$ |

Table 16.--Continued.

| Taxon | Eatimatod total population and 90\% confidence intorval | Estimated population numbers $(x \mathbf{1 0 0 0}$ ) by INPFC subarea and $\mathbf{9 0 \%}$ confidence interval |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Concoption | Montoray | Eurake | Columbia | US-Vencouver | Can-Vencouver | Vencouver |
|  | $\therefore$ | - |  |  |  |  | : | $\cdots$ |
| Rockfish (cont.) |  |  |  |  |  |  |  |  |
| Redatrips | 34,182 $\pm 53$ | -- | $78 \pm 189$ | $13 \pm 143$ - | $6,757 \pm 98$ | 12,179 $\pm 73$ | $15.155 \pm 90$ | $27.334 \pm 62$ |
| Sharpchin | $37,380 \pm 65$ | $38 \pm 114$ | 1,579 $\pm 75$ | 1,451 $\pm 162$ | $13.067 \pm 69$ | $7.640 \pm 63$ | $13.007 \times 1.10$ | 20,047 $\pm 91$ |
| Shortbelly | $193.954 \pm 83$ | $89.454 \pm 153$ | 103.590 $\pm 67$ | $122 \pm 104$ | $553 \pm 103$ | $10 \pm 165$ | $219 \pm 165$ | $229 \pm 155$ |
| Silvergray | $1,619 \pm 71$ | - | - -. | $\cdots$ | $21 \pm 77$ | $478 \pm 75$ | 1,122 $\pm 81$ | $1.698 \pm 72$ |
| Splitnoso | $43,076 \pm 29$ | 3,446 $\pm 70$ | $16.167 \pm 50$ | $7.805 \pm 71$ | $11.931 \pm 62$ | $1,310 \pm 91$ | $2.417 \pm 121$ | $3,727 \pm 105$ |
| Stripotail | $141.539 \pm 44$ | 29,309 $\pm 73$ | $100,083 \pm 58$ | $10.231 \pm 76$ | $1,851 \pm 81$ | $259 \pm 143$ | $6 \pm 112$ | $284 \pm 141$ |
| Widow | $14.745 \pm 79$ | $3,890 \pm 171$ | 3,254 $\pm 137$ | 2,908 $\pm 168$ | $582 \pm 98$ | 3,821 $\pm 160$ | $310 \pm 159$ | $4,132 \pm 160$ |
| Yollowtail | 15,256 $\pm 69$ | -- | $1.230 \pm 118$ | $243 \pm 112$ | $5.113 \pm 88$ | 6,329 $\pm 130$ | $2,341 \pm 88$ | $8,670 \pm 110$ |
| Other fish |  |  |  |  |  |  |  |  |
| Lingcod | $4,897 \pm 22$ | $124 \pm 60$ | $1,353 \pm 39$ | $184 \pm 65$ | $943 \pm 42$ | $534 \pm 46$ | $1.778 \pm 44$ | $2.312 \pm 37$ |
| Pacilic hako | 723,009 $\pm 24$ | $14.419 \pm 77$ | 208,881 $\pm 37$ | 88,688 $\pm 112$ | $360.264 \pm 31$ | 28,799 $\pm 53$ | $23.968 \pm 116$ | $52.767 \pm 71$ |
| Sablefish | $58.552 \pm 74$ | - $710 \pm 50$ | $\mathbf{2 6 . 6 0 5} \pm 149$ | $4.074 \pm 100$. | $15.729 \pm 69$ | $5.827 \pm 127$ | - $3.007 \pm 51$ | $8.434 \pm 87$ |



Table-17.--Continued.

|  | Eatimatod shallow population and 80\% conlidence interval | Estimeted population numbers ( $x$ 1000) by INPFC subarea and $\mathbf{9 0 \%}$ confidence interval |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Conception | Monteroy | Euroka | Columbia | US-Vacouver | Can-Vencouver | Vencouver |
|  |  |  |  |  |  |  |  |  |
| Rockfieh (cont.) |  |  |  |  |  |  |  |  |
| Redstripe | $32.044 \pm 58$ | -- | $78 \pm 169$ | $3 \pm 169$ | $0.488 \pm 100$ | 11,583 $\pm 78$ | 13,912 $\pm 97$ | 25,475 $\pm$ 6日 |
| Sharpehin | $16.602 \pm 47$. | $12 \pm 172$ | $911 \pm 88$ | $1.409 \pm 167$ | $7.057 \pm 90$ | 3,314 $\pm \mathbf{6 3}$ | $3.898 \pm 79$ | $7.213 \pm 64$ |
| Shortbelly | $54,249 \pm 70$ | $5,364 \pm 82$ | $48.080 \pm 78$ | $43 \pm 68$ | $528 \pm 108$ | $10 \pm 165$ | $219 \pm 155$ | $229 \pm 155$ |
| Silvergray | $1.049 \pm 62$ | -- | -. | -. | $10 \pm 120$ | $343 \pm 84$ | $696 \pm 79$ | $1,039 \pm 63$ |
| Splitnose | $1.255 \pm 64$. | -- | $87 \pm 123$ | $230 \pm 112$ | $883 \pm 88$ | $18 \pm 71$ | $32 \pm 149$ | $61 \pm 100$ |
| Stripetail | $89.379 \pm 53$ | $13.129 \pm 67$ | $67.732 \pm 68$ | B. $105 \pm 90$ | $343 \pm 99$ | $64 \pm 108$ | $5 \pm 118$ | $69 \pm 109$ |
| Widow | $14.699 \pm 79$ | $3.884 \pm 172$ | $3.230 \pm 138$ | 2,908 $\pm 160$ | $552 \pm 98$ | $3.820 \pm 180$ | $306 \pm 161$ | $4,128 \pm 160$ |
| Yollowtail | 15,249 $\pm 70$ | -- | $1.230 \pm 118$ | $243 \pm 112$ | $5.108 \pm 88$ | 6,328 $\pm 136$ | $2.341 \pm 88$ | $8,868 \pm 110$ |
| Other fish |  |  |  |  | . |  |  |  |
| Lingcod | $4,627 \pm 23$ | $124 \pm 60$ | $1,333 \pm 39$ | $133 \pm 65$ | $807 \pm 48$ | $491 \pm 49$ | $1.738 \pm 45$ | $2,229 \pm 38$ |
| Pacilic hako | $595.472 \pm 28$ | . $1.587 \pm 158$ | 154.532 $\pm 46$ | $82.155 \pm 121$ | $327.817 \pm 34$ | $21.364 \pm 61$ | $8.018 \pm 63$ | $29.382 \pm 48$ |
| Sablefish | $46.919 \pm 88$ | $275 \pm 40$ | $25.711 \pm 155$ | $525 \pm 77$ | $11.676 \pm 74$ | $5.440 \pm 130$ | 3,294 $\pm 65$ | $8,733 \pm 94$ |



Table 18.--Continued.


Table 19.--Population estimates for Pacific hake by age group and mean length at age in the International North Pacific Fisheries Commission Conception area.

| Age | Year <br> class | Population number | Cumulative \% | Mean <br> length <br> (cmi) |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1989 | 3,456,286 | 24.1 | 12.2 |
| 1 | 1988 | 8,846,738 | 85.5 | 25.0 |
| 2 | 1987 | 888,434 | 91.6 | 27.7 |
| 3 | 1986 | 54,373 | 92.0 | 36.8 |
| 4 | 1985 | 21,.552 | 92.1 | 38.4 |
| 5 | 1984 | 96,330 | 92.8 | 43.8 |
| 6 | 1983 | 8,787 | 92.9 | 46.7 |
| 7 | 1982 | 19,274 | 93.0 | 45.8 |
| 8 | 1981 | 4,700 | 93.0 | 47.7 |
| 9 | 1980 | 162,713 | 94.2 | 48.7 |
| 10 | 1979 | 14,647 | 94.3 | 50.1 |
| 11 | 1978 | 570 | 94.3 | 50.0 |
| 12 | 1977 | 71,373 | 94.8 | 52.4 |
| 13 | 1976 | 1,900 | 94.8 | 55.0 |
| 14 | 1975 | 4,396 | 94.8 | 56.9 |
| 16 | 1973 | 2,564 | 94.8 | 57.9 |
| 17 | 1972 | 1,900 | 94.8 | 58.0 |
| 19 | 1970 | 1;425 | 94.9 | 61.0 |
|  |  |  | $\checkmark$ |  |
| Above, below, or. between key lengths |  |  |  |  |
|  |  | 760,635 | 100.0 | - |
| Total ${ }^{\text {a }}$ |  | 14,418,600 | 100.0 | 22.3 |

[^0]Table 20.-- Population estimates for Pacific hake by age group and mean length at age in the International North Pacific Fisheries Commission Monterey area.

| Age | Year <br> class | Population number | Cumulative \% | Mean length (cm) |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1989 | 3,158,249 | 1.5 | 11.8 |
| 1. | 1988 | 33,398, 126 | 17.7 | 26.7 |
| 2 | 1987. | 35,453,897 | 34.8 | 33.3 |
| 3 | 1986 | 14,162,080 | 41.7 | 37.0 |
| 4 | 1985 | 8,729,517 | 45.9 | 38.7 |
| 5 | . 1984 | 34,524,207 | . 62.6 | 42.8 |
| 6 | 1983 | 3,712,764 | 64.4 | 44.7 |
| 7 | 1982 | 6,788,450 | 67.7 | 44.6 |
| 8 | 1981 | 1,273;910 | 68.3 | 47.5 |
| 9 | 1980 | 50,247,110 | 92.6 | 45.4 |
| 10 | 1979 | 3,734,584 | 94.4 | 46.4 |
| . 11 | 1978 | 241,516 | 94.5 | 50.0 |
| 12 | 1977. | 9,048,638 | 98.9 | 49.3 |
| 13 | 1976 | 72,171 | 98.9 | 55.0 |
| 14 | 1975 | 167,441 | 99.0 | 55.6 |
| 16. | 1973 | 293,179 | 99.1 | 55.7 |
| 17 | 1972 | 33,298 | 99.1 | 58.0 |
| 19 | 1970 | 269,985 | 99.3 | 64.3 |
| Above, below, or between key lengths |  | 1,571,638 | 100.0 | -- |
| Tot |  | 206,880,759 | 100.0 | 38.7 |

[^1]Table 21 .--Population estimates for Pacific hake by age group and mean length at age in the International North Pacific Fisheries Commission Eureka area.


Table 22 .--Population estimates for Pacific hake by age group and meanlength at age in the International North Pacific Fisheries Commission Columbia area.


Table 23.--Population estimates for Pacific hake by age group and mean length at age in the International North Pacific Fisheries Commission U.S. Vancouver area.

|  Year <br> Age class | Population number | Cumulative \%. | Mean length (cm) |
| :---: | :---: | :---: | :---: |
| 11988 | 578 | 0.0 | 23.5 |
| 21987 | 56,673 | 0.2 | 39.0 |
| 31986 | 41,573 | 0.3 | 41.0 |
| 41985 | 248,558 | 1.2 | 45.0 |
| 51984 | 7,839,575 | 28.4 | 44.8 |
| 61983 | 201,384 | 29.1 | 46.7 |
| 71982 | 548,784 | 31.0 | 47.6 |
| 81981 | 106,276 | 31.4 | 47.0 |
| 91980 | 15,877,836 | 86.5 | 48.0 |
| 101979 | 337,725 | 87.7 | 50.9 |
| 111978 | 125,779 | 88.1 | 50.7 |
| 121977 | 2,950,477 | 98.4 | 52.7 |
| 131976 | 13,154 | 98.4 | 58.0 |
| 141975 | 35,814 | 98.6 | 53.0 |
| 161973 | 272,137 | 99.5 | 56.1 |
| 171972 | 39,113 | 99.6 | 65.2 |
| 191970 | 31,115 | 99.8 | 56.0 |
| Above, below, or between key lengths | 72,858 | 100.0 | -- |
| Total ${ }^{\text {a }}$ | 28,799,408 | 100.0 | 47.7 |

${ }^{3}$ Differences in totals may exist due to rounding.
Table 24.--Population estimates for Pacific hake by age group and mean length at age in the International North Pacific Fisheries Commission Canadian Vancouver area.

| Age | Year <br> class | Population number | $\begin{gathered} \text { Cumulative } \\ \frac{\%}{8} \end{gathered}$ | Mean length (cm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1988 | 12,707 | 0.1 | 26.0 |
| 2 | 1987 | 42,106 | 0.2 | 31.4 |
| 5 | 1984 | 2,625,741 | 11.2 | 47.2 |
| 6 | 1983 | 482,376 | 13.2 | 46.9 |
| 7 | 1982 | 335,251 | 14.6 | 50.0 |
| 8 | 1981 | 208,449 | 15.5 | 45.2 |
| 9 | 1980 | 14,673,224 | 76.7 | 50.7 |
| 10 | 1979 | 630,830 | 79.4 | 53.9 |
| 12 | 1977 | 3,227,227 | 92.8 | 53.4 |
| 16 | 1973 | 706,412 | 95.8 | 54.8 |
| Above, below, or between key lengths |  | 1,013,535 | 100.0 | -- |
| Total ${ }^{\text {a }}$ |  | 23,957,857 | 100.0 | 50.5 |

[^2]Table 25 .--Population estimates for Pacific hake by age group and mean length at age in the International North Pacific Fisheries Commission Vancouver area.

${ }^{\text {a }}$ Differences in totals may exist due to rounding.
Table 26.--Population estimates for Pacific hake by age group and mean length at age for all International North Pacific Fisheries Commission areas combined.

| Age. | Year <br> class | Population number | $\underset{8}{\text { Cumulative }}$ | Mean length (cm) |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1989 | 6,614,535 | 0.9 | 12.0 |
| 1 | 1988 | 102,702,680 | 15.1 | 25.0 |
| 2 | 1987 | 44,230,363 | 21.2 | 32.7 |
| 3 | 1986 | 13,356,915 | 23.1 | 37.1 |
| 4 | 1985 | 10,938,495 | 24.6 | 40.4 |
| 5 | 1984 | 188,179,221 | 50.6 | 44.1 |
| 6 | 1983 | 10,712,548 | 52.1 | 45.4 |
| 7 | 1982 | 12,894,100 | 53.9 | 45.9 |
| 8 | 1981 | 5,067,437 | 54.6 | 45.3 |
| 9 | 1980 | 277,593,273 | 93.0 | 46.5 |
| 10 | 1979 | 7,977,182 | 94.1 | 47.9 |
| 11 | 1978 | 1,392,574 | 94.3 | 49.3 |
| 12 | 1977 | 36,360,561 | 99.3 | 50.4 |
| 13 | 1976 | 185,817 | 99.3 | 55.8 |
| 14 | 1975 | 472,459 | 99.4 | 54.3 |
| 16 | 1973 | 2,283,970 | 99.7 | 56.8 |
| 17 | 1972 | 198,631 | 99.8 | 64.4 |
| 19 | 1970 | 288,481 | 99.8 | 63.8 |
| Above, below, or between key lengths |  | 1,559,582 | 100.0 | -- |
| Tot |  | 723,008,824 | . 100.0 | 41.6. |

Table 27 .--Population estimates for Pacific ocean perch by age group and mean length at age in the International North Pacific Fisheries Commission Eureka area.

| Age | Year <br> class | Population number | Cumulative | Mean length (cm) |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 1987 | 1,875 | 0.5 | 20.0 |
| 3 | 1986 | 2,164 | 1.1 | 24.0 |
| 4 | 1985 | 28,459 | 8.6 | 26.9 |
| 5 | 1984 | 29,921 | 16.4 | 29.8 |
| 6 | 1983 | 21,612 | 22.1 | 30.8 |
| 7 | 1982 | 10,791 | 25.0 | 34.1 |
| 8 | 1981 | 18,381 | 29.8 | 34.4 |
| 9 | 1980 | 22,138 | 35.6 | 34.4 |
| 10 | 1979 | 20,685 | 41.1 | 37.0 |
| 11 | 1978 | 19,516 | 46.2 | 36.9 |
| 12 | 1977 | 15,345 | 50.3 | 37.5 |
| 13 | 1976 | 13,982 | 54.0 | 37.5 |
| 14 | 1975 | 18,401 | 58.8 | 37.6 |
| 15 | 1974 | 12,609 | 62.1 | 36.4 |
| 16 | 1973 | 4,871 | 63.4 | 39.3 |
| 17 | 1972 | 4,230 | 64.5 | 40.4 |
| 18 | 1971 | 8,054 | 66.6 | 38.3 |
| 19 | 1970 | 18,378 | 71.5 | 37.1 |
| 20 | 1969 | 10,889 | 74.3 | 38.1 |
| 21 | 1968 | 5,819 | 75.9 | 38.6 |
| 22 | 1967 | 9.798 | 78.5 | 39.8 |
| 23 | 1966 | 5,616. | 79.9 | 36.6 |
| 24 | 1965 | 16,264 | 84.2 | 36.6 |
| 25 | 1964 | 12,797 | 87.6 | 38.4 |
| 26 | 1963 | 1,365 | 87.9 | 40.0 |
| 27 | 1962 | 2,340 | 88.6 | 36.0 |
| 28 | 1961 | 4,641 | 89.8 | 37.9 |
| 29 | 1960 | 1,520 | 90.2 | 41.0 |
| 30 | 1959 | 681 | 90.4 | 41.0 |
| 31 | 1958 | 1,365 | 90.7 | 40.0 |
| 32 | 1957 | 2,656 | 91.4 | 41.7 |
| 35 | 1954 | 1,975 | 91.9 | 42.0 |
| 36 | 1953 | 3,801 | 92.9 | 38.5 |
| 37 | 1952 | 681 | 93.1 | 41.0 |
| 38 | 1951 | 4,095 | 94.2 | 38.0 |
| 39 | 1950 | 1,753 | 94.7 | 39.0 |
| 40 | 1949 | 3,276 | 95.5 | 37.0 |
| 49 | 1940 | 1,753 | 96.0 | 39.0 |
| 53 | 1936 | 2,047 | 96.5 | 43.0 |
| Above, below, or between key lengths |  | 13,122 | 100.0 | -- |
| Tot |  | 379,665 | 100.0 | 34.8 |

Table 28.--Population estimates for Pacific ocean perch by age group and mean length at age in the International North Pacific Fisheries Commission Columbia area.

${ }^{\text {a }}$ Differences in totals may exist due to rounding.

Table 29.--Population estimates for Pacific ocean-perch by age group and mean length at age in the International North Pacific Fisheries Commission U.S. Vancouver area.

| Age | Year <br> class | Population number | Cumulative $\%$ | Mean <br> length <br> (cm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1988 | 43,109 | 0.4 | 14.2 |
| 2 | 1987 | 167,832 | 1.7 | 18.9 |
| 3 | 1986 | 73,735 | 2.3 | 22.9 |
| 4 | 1985 | 2,848,778 | 25.4 | 27.1 |
| 5 | 1984 | 699,078 | 31.1 | 29.3 |
| 6 | 1983 | 223,064 | 32.9 | 29.9 |
| 7 | 1982 | 683,466 | 38.5 | 32.9 |
| 8 | 1981 | 2,149,447 | 55.9 | 33.9 |
| 9 | 1980 | 712,783 | 61.7 | 34.2 |
| 10 | 1979 | 634,192 | 66.9 | 36.7 |
| . 11 | 1978 | 481,306 | 70.8 | 36.6 |
| ' 12 | 1977 | 346,802 | 73.6 | 37.3 |
| 13 | 1976 | 307,222 | 76.1 | 35.8 |
| 14 | 1975 | 175,129 | 77.5 | 37.0 |
| 16 | 1973 | 122,715 | 78.5 | 37.7 |
| 21 | 1968 | 39,446 | 78.8 | 37.0 |
| 23 | 1966 | 108,637 | 79.7 | 40.0 |
| 24 | 1965 | 110,070 | 80.6 | 37.0 |
| 26 | 1963 | 39,446 | 80.9 | 37.0 |
| 27 | 1962 | 307,052 | 83.4 | 43.2 |
| 28 | 1961 | 66,722 | 83.9 | 39.0 |
| 30 | 1959 | 133,105 | 85.0 | 38.5 |
| 33 | 1956 | 108,637 | 85.9 | 40.0 |
| 35 | 1954 | 189,249 | 87.4 | 41.0 |
| 37 | 1952 | 40,035 | 87.7 | 47.0 |
| 38 | 1951 | 239,905 | 89.7 | 42.0 |
| 39 | 1950 | 189,249 | 91.2 | 41.0 |
| 41 | 1948 | 108,637 | 92.1 | 40.0 |
| 43 | 1946 | 66,722 | 92.7 | 39.0 |
| 44 | 1945 | 66,722 | 93.2 | 39.0 |
| 46 | 1943 | 18,210 | 93.3 | 42.0 |
| 50 | 1939 | 39,446 | 93.7 | 37.0 |
| 57 | 1932 | 66,722 | 94.2 | 39.0 |
| 78 | 1911 | 171,671 | 95.6 | 44.0 |
| 81 | 1908 | 179,301 | 97.1 | 41.0 |
| Above, below, or |  |  |  |  |
| between key. lengths |  | 363,000 | 100.0 | -- |
| Total ${ }^{\text {a }}$ |  | 12,320,638 | 100.0 | 33.7 |

'Differences in totals may exist due to rounding.

Table 30.--Population estimates for Pacific ocean perch age group and mean length at age in the International North Pacific Fisheries Commission Canadian Vancouver area.

| Age | Year <br> class | Population number | Cumulative \% | Mean length (cm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1988 | 149,451 | 2.4 | 13.9 |
| 2 | 1987 | 139,801 | 4.6 | 18.2 |
| 3 | 1986 | 70,218 | 5.8 | 21.7 |
| 4 | 1985 | 553,609 | 14.7 | 26:9 |
| 5 | 1984 | 519,293 | 23.0 | 28.0 |
| 6 | 1983 | 155,998 | 25.5 | 30.4 |
| 7 | 1982 | 248,690 | 29.5 | 32.8 |
| 8 | 1981 | 1,085,711 | 46.9 | 33.9 |
| 9 | 1980 | 317,687 | 52.0 | 35.8 |
| 10 | 1979 | 596,713 | 61.6 | 36.3 |
| 11 | 1978 | 656,139 | 72.1 | 37.3 |
| 12 | 1977 | 500,141 | 80.1 | 37.7 |
| 13 | 1976 | 49,071 | 80.9 | 39.5 |
| 14 | 1975 | 89,065 | 82.3 | 39.3 |
| 15 | 1974 | 23,792 | 82.7 | 38.4 |
| 17 | 1972 | 34,733 | 83.3 | 39.4 |
| 18 | 1971 | 54,022 | 84.1 | 41.6 |
| 19 | 1970 | 12,427 | 84.3 | 41.0 |
| 20 | 1969 | 18,827 | 84.6 | 43.6 |
| 21 | 1968 | 27,209 | 85.1 | 43.0 |
| 23 | 1966 | 16,236 | 85.3 | 46.0 |
| 24 | 1965 | 52,690 | -86.2 | 41.0 |
| 25 | 1964 | 69,449 | 87.3 | 41.2 |
| 26 | 1963 | 110,088 | 89.1 | 43.5 |
| 27 | 1962 | 40,368 | 89.7 | 41.0 |
| 35 | 1.954 | 10,352 | 89.9 | 44.0 |
| 37 | 1952 | 30,248 | 90.4 | 47.0 |
| 38 | 1951 | - 30,016 | 90.9 | 40.0 |
| 39 | 1950 | - 2,132 | 90.9 | 45.0 |
| 40 | 1949 | 32,718 | 91.4 | 45.0 |
| 43 | 1946 | 15,421 | 91.7 | 45.3 |
| 47 | 1942 | 16,236 | 91.9 | 46.0 |
| 54 | 1935 | 16,236: | 92.2 | 46.0 |
| 57 | 1932 | 10,352 | 92.4 | 44.0 |
| Above, below, or between key lengths |  | 478,284 | 100.0 | -- |
| Tota |  | $6,233,423$ | 100.0 | 33.0 |

 mean length at age in the International North Pacific Fisheries Commission Vancouver area.

| Age | Year <br> class | Population number | Cumulative | Mean length (cm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1988 | 200,300 | 1.1 | 14.0 |
| 2 | 1987 | 365,627 | 3.1 | 18.7 |
| 3 | 1986 | 164,468 | 3.9 | 23.0 |
| 4 | 1985 | 3,873,050 | 24.8 | 27.0 |
| 5 | 1984 | 1,113,847 | 30.8 | 29.0 |
| 6 | 1983 | 377,139 | 32.8 | 30.1 |
| 7 | 1982 | 926,010 | 37.8 | 32.9 |
| 8 | 1981 | 3,206,273 | 55.1 | 33.9 |
| 9 | 1980 | 1,060,619 | 60.8 | 34.8 |
| 10 | 1979 | 1,165,755 | 67.1 | 36.3 |
| 11 | 1978 | 1,347,189 | 74.4 | 37.2 |
| 12 | 1977 | 1,048,801 | 80.0 | 37.7 |
| 13 | 1976 | 335,587 | 81.8 | 36.7 |
| 14 | 1975 | 288,455 | 83.4 | 38.4 |
| 15 | 1974 | 39,759 | . 83.6 | 38.5 |
| 16 | 1973 | 71,976 | 84.0 | 37.5 |
| 17 | 1972 | 101,057 | 84.5 | 39.9 |
| 18 | 1971 | 165,967 | 85.4 | 41.3 |
| 19 | 1970 | 29,114 | 85.6 | 41.0 |
| 20 | 1969 | 49,565 | 85.8 | 43.6 |
| 21 | 1968 | 97,151 | 86.4 | 41.3 |
| 23 | 1966 | 113,731 | 87.0 | 42.3 |
| 24 | 1965 | 197,299 | 88.0 | 39.7 |
| 25 | 1964 | 232,990 | 89.3 | 41.7 |
| 26 | 1963 | 353,286 | 91.2 | 42.8 |
| 27 | 1962 | 257,120 | 92.6 | 42.2 |
| 28 | 1961 | 51,283 | 92.9 | 39.0 |
| 30 | 1959 | 86,772 | 93.3 | 38.6 |
| 33 | -1956 | 69,327 | 93.7 | 40.0 |
| 35 | 1954 | 96,085 | 94.2 | 42.0 |
| 37 | 1952 | 70,283 | 94.6 | 47.0 |
| 38 | 1951 | 252,388 | 96.0 | 41.5 |
| 39 | 1950 | 68,359 | 96.3 | 41.2 |
| 40 | 1949 | 87,950 | 96.8 | 45.0 |
| 41 | 1948 | 69,327 | 97.2 | 40.0 |
| 43 | 1946 | 114,230 | 97.8 | 43.1 |
| 44 | 1945 | 51,283 | 98.1 | 39.0 |
| 46 | 1943 | 15,783 | 98.2 | 42.0 |
| 47 | 1942 | 44,404 | 98.4 | 46.0 |
| 50 | 1939 | 33,316 | 98.6 | 37.0 |
| 54 | 1935 | 44,404 | 98.8 | 46.0 |
| 57 | 1932 | 81,801 | 99.3 | 40.9 |
| 78 | 1911 | 30,517 | 99.4 | 44.0 |
| 81 | 1908 | 29,114 | 99.6 | 41.0 |
| Above, below, or between key lengths |  | 75,300 | 100.0 | -- |
| Tot |  | 18,554,061 | 100.0 | 33.5 |

Table 32 .--Population estimates for Pacific ocean perch by age group and mean length at age for all International North Pacific Fisheries Commission areas combined.

${ }^{\text {a }}$ Differences in totals may exist due to rounding.

Table 33 .--Population estimates for canary rockfish by age group and mean length at age in the International North Pacific Fisheries Commission Conception area.

| Age: Year | Population number | Cumulative \% | Mean length (cm) |
| :---: | :---: | :---: | :---: |
| 51984 | 4,027 | 100.0 | 31.0 |
| Above, below, or between key lengths | 0 | 100.0 | -- |
| Total | 4,027 | 100.0 | 31.0 |

${ }^{\text {a }}$ Differences in totals may exist due to rounding.

Table 34.--Population estimates for canary rockfish by age group and mean length at age in the International North Pacific Fisheries Commission Monterey area.

| Age | Year <br> class | Population number | Cumulative \% | ' | Mean <br> length <br> (cm) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1986 | 27,869 | 2.6 |  | 22.3 |
| 4 | 1985 | 7,342 | 3.3 |  | 27.0 |
| 5 | 1984 | 606,336 | 60.4 |  | 30.5 |
| 6 | 1983 | 32,638 | 63.4 | $\cdots$ | 30.9 |
| 7 | 1982 | 100,252 | 72.9 |  | 36.3 |
| 8 | 1981 | 154,707 | 87.4 |  | 38.8 |
| 9 | 1980 | 73,809 | 94.3 |  | 39.8 |
| 10 | 1979 | 10,969 | 95.4 |  | 42.5 |
| 11 | 1978. | 6,509 | 96.0 |  | 46.9 |
| 12 | 1977 | 4,800 | 96.4 |  | 49.9 |
| 13 | 1976 | 2,602 | 96.7 |  | 45.4 |
| 14 | 1975 | 1,583 | 96.8 |  | 49.5 |
| 15 | 1974 | 1,583 | 97:0 |  | 49.5 |
| 17 | 1972 | 2,609 | 97.2 |  | 50.0 |
| 20 | 1969 | 1,265 | 97.3 |  | 59.0 |
| 22 | 1967 | 1,265 | 97:5 |  | 59.0 |
| Above, below, or <br> between key lengths |  |  |  |  | -- |
| Tot |  | 0 | 100.0 |  | 33.4 |

Table 35.--Population estimates for canary rockfish by age group and mean, length at age in the International North Pacific Fisheries. Commission Eureka area.


[^3]Table 36.--Population estimates for canary rockfish by age group and mean length at age in the International North Pacific Fisheries Commission Columbia area.

| Age | Year <br> class | Population number | Cumulative $\%$ | Mean length (cm) |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 1986 | 1,056 | 0.0 | 27.0 |
| 4. | 1985 | 1,056. | 0.1 | 27.0 |
| 5 | 1984 | 174,691 | 6.2 | 31.0 |
| 6 | 1983 | 9,604 | 6.5 | 35.3 |
| 7 | 1982 | 83,004 | 9.4 | 37.9 |
| 8 | 1981 | 167,420 | 15.3 | 41.0 |
| 9 | 1980 | 116,922 | 19.4 | 43.7 |
| 10 | 1979 | 194,944 | 26.2 | 48.5 |
| 11 | 1978 | 311,305 | 37.1 | 49.0 |
| 12 | 1977 | 273,214 | 46.7 | 50.3 |
| 13 | 1976 | 115,830 | 50.7 | 47.8 |
| 14 | 1975 | 100,085 | 54.2 | 50.3 |
| 15 | 1974 | 185,787 | 60.7 | 51.8 |
| 16 | 1973 | 101,244 | 64.2 | 52.4 |
| 17 | 1972 | 61,574 | 66.4 | 51.2 |
| 18 | 1971 | 59,029 | 68.5 | 53.6 |
| 19 | 1970 | 128,893 | 73.0 | 51.9 |
| 20 | 1969 | 23,782 | 73.8 | 52.4 |
| 22 | 1967 | 2,654 | 73.9 | 59.0 |
| 23 | 1966 | 7,962 | 74.2 | 57.0 |
| 24 | 1965 | 35,134 | 75.4 | 52.0 |
| 26 | 1963 | 7,962 | 75.7 | 57.0 |
| 27 | 1962 | 17,147 | 76.3 | 51.0 |
| 32 | 1957 | - 73,715 | 78.9 | 52.5 |
| 33 | 1956 | 12,583 | 79.3 | 54.0 |
| 37 | 1952 | 8,602 | 79.6 | 54.0 |
| 44 | 1945 | 3,981 | 79.7 | 54.0 |
| 47 | 1942 | 3,981 | 79.9 | 54.0 |
| 57 | 1932 | 24,464 | 80.7 | 55.0 |
| Above, below, or between key lengths |  | 551,008 | 100.0 | -- |
| Total ${ }^{\text {a }}$ |  | 2,858,634 | 100.0 | 45.5 |

Table 37. --Population estimates for canary rockfish by age group and mean length at age in the International North Pacific Fisheries. Commission U.S. Vancouver area.


Table 38.--Population estimates for canary rockfish by age group and mean length at age in the International North Pacific Fisheries Commission Canadian Vancouver area.


Table 39 .--Population estimates for canary rockfish by age group and mean length at age in the International North Pacific Fisheries Commission Vancouver area.

| Age | Year <br> class | Population number | Cumulative \% | Mean <br> length <br> (cm) |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 1986 | 61,173 | 1.2 | 21.4 |
| 4 | 1985 | 7,197 | 1.4 | 27.0 |
| 5 | 1984 | 372,602 | 8.9 | 28.0 |
| 6 | 1983 | 15,913 | 9.2 | 29.5 |
| 7 | 1982 | 149,202 | 12.2 | 38.8 |
| 8 | 1981 | 437,382 | 21.0 | 41.9 |
| 9 | 1980 | 320,108 | 27.5 | 44.1 |
| 10 | 1979 | 402, 826 | 35.6 | 47.8 |
| 11 | 1978 | 624,534 | 48.2 | 48.3 |
| 12 | 1977 | 506,811 | 58.4 | 49.0 |
| 13 | 1976 | 221,550. | 62.8 | 47.4 |
| 14 | 1975 | 173,061 | 66.3 | 51.0 |
| 15 | 1974 | 345,005 | 73.3 | 51.6 |
| 16 | 1973 | 188,202 | 77.1 | 51.8 |
| 17 | 1972 | 83,751 | 78.8 | 50.8 |
| 18 | 1971 | 74,669 | 80.3 | 54.5 |
| 19 | 1970 | 217,679 | 84.6 | 51.8 |
| 20 | 1969 | 70,251 | 86.1 | 53.6 |
| 22 | 1967 | 6,313 | . 86.2 | 59.0 |
| 23 | 1966 | 14,804 | 86.5 | 57.0 |
| 24 | 1965 | 41,051 | 87.3 | 52.0 |
| 26 | 1963 | 14,804 | 87.6 | 57.0 |
| 27 | 1962 | 30,422 | B8.2 ${ }^{\text {r }}$ | 51.0 |
| 32 | 1957 | 103,886, | 90.3 | 52.6 |
| 33 | 1956 | 45,703 | 91.2 | 54.0 |
| 37 | 1952 | 41,868 | 92.1 | 55.9 |
| 44 | 1945 | 23,420 | 92.5 | 54.0 |
| 47 | 1942 | 23,420 | 93.0 | 54.0 |
| 57 | 1932 | 15,650 | 93.3 | 55.0 |

Above, below, or

| between key lengths | 331,245 | 100.0 |  |
| :--- | :--- | :--- | :--- |
| Total | $4,964,502$ | 100.0 | 46.5 |

${ }^{\text {a }}$ Differences in totals may exist due to rounding.

Table 40 .--Population estimates for canary rockfish by age group and mean length at age for all International North Pacific Fisheries Commission areas combined.


Table 41 .--Population estimates for splitnose rockfish by age group and mean length at age in the International North Pacific Fisheries Commission Conception are.


Table 42 .--Population estimates for splitnose rockfish by age group and mean length at age in the International North Pacific Fisheries Commission Monterey area.

| Age | Year <br> class | Population number | Cumulative <br> 8 | Mean length (cm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1988 | 14,111 | 0.1 | 8.0 |
| 2 | 1987 | 591,434 | 3.8 | 12.9 |
| 3 | 1986 | 1,587,289 | 13.6 | 14.8 |
| 4 | 1985 | 2,355,396 | 28.1 | 17.1 |
| 5 | 1984 | 2,296,132 | 42.3 | 19.3 |
| 6 | 1983 | 991,433 | 48.5 | 20.3 |
| 7 | 1982 | 1,704,489 | 59.0 | 20.2 |
| 8 | 1981 | 787,990 | 63.9 | 22.1 |
| 9 | 1980 | 227,897 | 65.3 | 23.9 |
| 10 | 1979 | 493,784 | 68.3 | 25.1 |
| 11 | 1978 | 100,933 | 69.0 | 26.6 |
| 12 | 1977 | 448, 568 | 71.7 | 23.2 |
| 13 | 1976 | 110,139 | 72.4 | 24.5 |
| 14 | 1975 | 15,329 | 72.5 | 27.0 |
| 15 | 1974 | 249,785 | 74.1 | 26.2 |
| 16 | 1973 | 184,809 | 75.2 | 28.1 |
| 18 | 1971 | 176,982 | 76.3 | 23.9 |
| 19 | 1970 | 29,974 | 76.5 | 26.0 |
| 20 | 1969 | 30,625 | 76.7 | 24.0 |
| 21 | 1968 | 66,434 | 77.1 | 27.8 |
| 22 | 1967 | 75,636 | 77.5 | 25.8 |
| 24 | 1965 | 66,192 | 78.0 | 26.0 |
| 25 | 1964 | 80,163 | 78.5 | 25.0 |
| 26 | 1963 | 249,975 | 80.0 | 28.0 |
| 27 | 1962 | 33,331 | 80.2 | 31.0 |
| 28 | 1961 | 231,196 | 81.6 | 28.1 |
| 29 | 1960 | 74,275 | 82.1 | 29.9 |
| 30 | 1959 | 114,864 | 82.8 | 28.5 |
| 31 | 1958 | 293,974 | 84.6 | 27.7 |
| 34 | 1955 | 304,761 | 86.5 | 26.1 |
| 35 | 1954 | 30,625 | 86.7 | 24.0 |
| 36 | 1953 | 261,108 | 88.3 | 26.5 |
| 37 | 1952 | 33,331 | 88.5 | 31.0 |
| 38 | 1951 | 159,483 | 89.5 | 29.2 |
| 39 | 1950 | 120,475 | 90.3 | 30.3 |
| 41 | 1948 | 33,331 | 90.5 | 31.0 |
| 42 | 1947 | 87,144 | 91.0 | 30.0 |
| 43 | 1946 | 120,058 | 91.8 | 32.2 |
| 45 | 1944 | 24,922 | 91.9 | 34.0 |
| 46 | 1943 | 7,325 | 92.0 | 35.0 |
| 48 | 1941 | 57,726. | 92.3 | 31.2 |
| 49 | 1940 | 7,325 | 92.4 | 35.0 |
| 50 | 1939 | 51,574 | 92.7 | 34.5 |
| 51 | 1938 | 42,133 | 93.0 | 29.0 |
| 52 | 1.937 | 11,708 | 93.0 | 37.4 |
| 53 | 1936 | 213,923 | 94.4 | 29.1 |
| 55 | 1934 | 216,676 | 95:7 | 27.7 |
| 56 | 1933 | 12,461 | 95.8 | 34.0 |
| 57 | 1932 | 75,159 | 96.2 | 29.9 |
| 58 | 1931 | 150,699 | 97.2 | 28.7 |
| 61 | 1928 | - 33,025 | 97.4 | 31.0 |
| 62 | 1927 | 83,683 | 97.9 | 31.2 |
| 64 | 1925 | 157,307 | 98.9 | 27.2 |
| 66 | 1923 | 26,392 | 99.0 | 32.0 |
| 68 | 1921 | 35,011 | 99.2 | 30.0 |
| Above, below, or |  |  |  |  |
| Tot |  | 16,166,893 | 100.0 | 21.3 |

Table 43.--Population estimates for splitnose rockfish by age group and mean length at age in the International North Pacific Fisheries Commission Eureka area.

| Age | Year <br> class | Population number | Cumulative 8 | Mean length (cm) |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 1987 | 439,415 | 5.8 | 13.4 |
| 3 | 1986 | 623,743. | 14.0 | 14.2 |
| 4 | 1985 | 1,319,962 | 31.5 | 17.2 |
| 5 | 1984 | 2,118,277 | 59.5 | 18.7 |
| 6 | 1983 | 518,796 | 66.3 | 19.5 |
| 7 | 1982 | 857,817 | 77.6 | 19.9 |
| 8 | 1981 | 293,828 | 81.5 | 20.8 |
| 9 | 1980 | 122,690. | 83.1 | 24.2 |
| 10 | 1979 | 106,564 | 84.6 | 24.8 |
| 11 | 1978 | 14,943 | 84.8 | 23.9 |
| 12 | 1977 | 99,157 | 86.1 | 20.2 |
| 13 | 1976 | 57,228 | 86.8 | 24.6 |
| 14 | 1975 | 3,514 | 86.9 | 27.0 |
| 15 | 1974 | 21,382 | 87.2 | 21.8 |
| 16 | 1973 | 21,710 | 87.4 | 26.7 |
| 18 | 1971 | 41,870 | 88.0 | 22.5 |
| 19 | 1970 | 16,060 | 88.2 | 25.4 |
| 20 | 1969 | 10,658 | 88.3 | 24.0 |
| 21 | 1968 | 17,359 | 88.6 | 26.1 |
| 22 | 1967 | 11,613 | 88.7 | 24.4 |
| 24 | 1965 | 2,405 | 88.8 | 26.0 |
| 25 | 1964 | 11,542 | 88.9 | 25.0 |
| 26 | 1963 | 17,284 | 89.1 | 25.0 |
| 27 | - 1962 | 912 | 89.1 | 31.0 |
| 28 | 1961 | 3,514 | 89.2 | 27.0 |
| 29 | 1960 | 1,503 | 89.2 | 30.2 |
| 30 | 1959 | 3,500 | 89.3 | 27.9 |
| 31 | 1958 | 2,995 | 89.3 | 28.2 |
| 34 | 1955 | 26,256. | 89.7 | 21.0 |
| 35 | 1954 | 10,658 | 89.8 | 24.0 |
| 36 | 1953 | , 4,809 | 89.9 | 26.0 |
| 37 | 1952 | . 912 | 89.9 | 31.0 |
| 38 | 1951 | 6,672 | 90.0 | 31.7 |
| 39 | 1950 | 912 | 90.0 | 31.0 |
| 41 | 1948 | 912 | 90.0 | 31.0 |
| 43 | 1946 | 3,285 | 90.0 | 32.3 |
| 45 | 1944 | 6,344 | 90.1 | 34.0 |
| 46 | 1943 | 1,825 | 90.1 | 35.0 |
| 48 | 1941 | 3,633 | 90.2 | 30.9 |
| 49 | 1940 | 1,825 | 90.2 | 35.0 |
| 50 | 1939 | 8,395 | 90.3 | 35.4 |
| 51 | 1938 | 1,443 | 90.3 | 29.0 |
| 53 | 1936 | 4,090 | 90.4 | 29.2 |
| 55 | 1934 | 19,359. | 90.6 | 25.8 |
| 56 | 1933 | -3,172 | 90.7 | 34.0 |
| 57 | 1932 | 4,180 | 90.7 | 30.3 |
| 58 | 1931 | 6,055 | 90.8 | 30.4 |
| 61 | 1928 | 2,737 | 90.8 | 31.0 |
| 62 | 1927 | -3,633 | 90.9 | 30.6 |
| 64 | 1925 | 15,523 | 91.1 | 26.2 |
| 66 | 1923 | 3,650 | 91.2 | 32.0 |
| 68 | 1921 | 2,538 | 91.2 | 30.0 |
| Above, below, or    <br> between key lengths 666,573 100.0 -100 <br> Total $7,569,633$ 100.0 18.2 |  |  |  |  |
|  |  |  |  |  |

a Differences in totals may exist due to rounding.

Table 44 .--Population estimates for splitnose rockfish by age group and mean length at age in the International North Pacific Fisheries Commission Columbia area.

| Age | Year <br> class | Population number | Cumulative | Mean <br> length <br> (cm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1988 | 13,900 | 0.1 | 8.0 |
| 2 | 1987 | 764,280 | 6.5 | 12.9 |
| 3 | 1986 | 1,071,239 | 15.5 | 13.8 |
| 4 | 1985 | 1,429,807 | 27.5 | 17.9 |
| 5 | 1984 | 2,436,363 | 47.9 | 19.4 |
| 6 | 1983 | 727,220 | 54.0 | 20.6 |
| 7 | 1982 | 1,656,829 | 67.9 | 20.6 |
| 8 | 1981 | 679,007 | 73.6 | 21.5 |
| 9 | 1980 | 365,155 | 76.7 | 23.6 |
| 10 | 1979 | 221,166 | 78.5 | 24.3 |
| 11 | 1978 | 66,102 | 79.1 | 23.4 |
| 12 | 1977 | 119,118 | 80.1 | 21.4 |
| 13 | 1976 | 142,231 | 81.2 | 23.7 |
| 14 | 1975 | 6,758 | 81.3 | 27.0 |
| 15 | 1974 | 45,835 | 81.7 | 24.6 |
| 16 | 1973 | 45,727 | 82.1 | 28.7 |
| 18 | 1971 | 93,833 | 82.9 | 23.9 |
| 19 | 1970 | 34,790 | 83.1 | 25.4 |
| 20 | 1969 | 26,554 | 83.4 | 24.0 |
| 21 | 1968 | 9,461 | 83.4 | 28.0 |
| 22 | 1967 | 44,619 | 83.8 | 24.5 |
| 24 | 1965 | 12,012 | 83.9 | 26.0 |
| 25 | 1964 | 13,514 | 84.0 | 25.0 |
| 26 | 1963 | 105,773 | 84.9 | 25.8 |
| 27 | 1962 | 6,034 | 85.0 | 31.0 |
| 28 | 1961 | 31,723 | 85.2 | 27.4 |
| 29 | 1960 | 12,342 | 85.3 | 30.0 |
| 30 | 1959 | 18,319 | 85.5 | 28.1 |
| 31 | 1958 | 50,983 | 85.9 | 27.7 |
| 34 | 1955 | 66, 565 | 86.5 | 23.4 |
| 35 | 1954 | 26,554 | 86.7 | 24.0 |
| 36 | 1953 | 45,048 | 87.1 | 26.5 |
| 37 | 1952 | 6,034 | 87.1 | 31.0 |
| 38 | 1951 | 33,113. | 87.4 | 29.4 |
| 39 | 1950 | 9,976 | 87.5 | 30.6 |
| 41 | 1948 | 6,034 | 87.5 | 31.0 |
| 42 | 1947 | 3,942 | 87.6 | 30.0 |
| 43 | 1946 | 22,075 | 87.8 | 32.4 |
| 48 | 1941 | 28, 382 | 88.0 | 31.0 |
| 50 | 1939 | 9,461 | 88.1 | 33.0 |
| 51 | 1938 | 18,921 | 88.2 | 29.0 |
| 53 | 1936 | 36,266 | 88.5 | 28.9 |
| 55 | 1934 | 65,967 | 89.1 | 24.3 |
| 57 | 1932 | 18,921. | 89.2 | 29.0 |
| 58 | 1931 | 23,652 | 89.4 | 28.0 |
| 62 | 1927 | 25,229 | 89.6 | 30.5 |
| 64 | 1925 | 51,357 | 90.1 | 28.3 |
| 68 | 1921 | 18,921 | 90.2 | 30.0 |
| Above, below, or between key lengths |  | 1,164,098 | 100.0 | -- |
| Total ${ }^{\text {a }}$ | - | 11,931,210 | 100.0 | 18.8 |
| ${ }^{\text {a }}$ Differences in totals may exist due to rounding. |  |  |  |  |

Table 45. --Population estimates for splitnose rockfish by age group and mean length at age in the International North Pacific Fisheries Commission U.S. Vancouver area.

| Age | Year <br> class | Population number | Cumulative | Mean length (cm) |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 1987 | 11,878 | 0.9 | 12.0 |
| 3 | 1986 | 245,877 | 19.8 | 13.1 |
| 4 | 1985 | 124,070 | 29.3 | 18.2 |
| 5 | 1984 | 146,856 | 40.5 | 19.1 |
| 6 | 1983 | 35,463 | 43.2 | 22.2 |
| 7 | 1982 | 155,681 | 55.2 | 20.9 |
| 8 | 1981 | 66,432 | 60.3 | 22.7 |
| 9 | 1980 | 71,639 | 65.7 | 24.6 |
| 10 | 1979 | 74,997 | 71.5 | 25.1 |
| 11 | 1978 | 20,478 | 73.1 | 26.5 |
| 12 | 1977 | 13,629 | 74.1 | 27.0 |
| 13 | 1976 | 39,564 | 77.1 | 25.1 |
| 14 | 1975 | 4,954. | 77.5 | 27.0 |
| 15 | 1974 | 13,074 | 78.5 | 27.7 |
| 16 | 1973 | 22,738 | 80.3 | 26.9 |
| 18 | 1971 | 9,632 | 81.0 | 25.5 |
| 19 | 1970 | 10,681 | 81.8 | 25.9 |
| 20 | 1969 | 4,453 | 82.2 | 24.0 |
| 21 | 1968 | 17,974 | 83.5 | 26.2 |
| 22 | 1967 | 15,029 | 84.7 | 25.0 |
| 24 | 1965 | 7.779 | 85.3 | 26.0 |
| 25 | 1964 | 7,799 | 85.9 | 25.0 |
| 26 | 1963 | 24,842 | 87.8 | 26.6 |
| 27 | 1962 | 109 | 87.8 | 31.0 |
| 28 | 1961 | 15,606 | 89.0 | 28.7 |
| 29 | 1960 | 1,408 | 89.1 | 29.2 |
| 30 | 1959 | 9,078 | 89:8 | 26.9 |
| 31 | 1958 | 5,258 | 90.2 | 27.9 |
| 34 | 1955 | 10,877 | 91.0 | 29.3 |
| 35 | 1954 | 4,453 | 91.4 | 24.0 |
| 36 | 1953 | 17,351 | 92.7 | 26.1 |
| 37 | 1952 | 109 | 92.7 | 31.0 |
| 38 | 1951 | 3,596 | 93.0 | 30.0 |
| 39 | 1950 | 8,968. | 93.7 | 30.0 |
| 41 | 1948 | - 109 | 93.7 | 31.0 |
| 42 | 1947 | 8,859 | 94.4 | 30.0 |
| 43 | 1946 | 4,029 | 94.7 | 32.4 |
| 48 | 1941 | 5,328 | 95.1 | 30.8 |
| 50 52 | 1939 | 19,430 | 95.2 96.7 | 33.0 |
| 52 53 | 1936 | 19,491 4,764 | 97.1 | 37.7 29.4 |
| 55 | 1934 | 8,798 | 97.7 | 23.8 |
| 58 | 1931 | 2,166 | 97.9 | 28.0 |
| 62 | 1927 | 5,198 | 98.3 | 30.5 |
| 64 | 1925 | 11,697 | 99.2 | 26.7 |
| 68 | 1921 | 3,898 | 99.5 | 30.0 |
| Above, below, or between key lengths |  | 7,002 | 100.0 | -- |
| Tot |  | 1,305,102 | 100.0 | 21.4 |

Table 46 .--Population estimates for splitnose rockfish by age group and mean length at age in the International North Pacific Fisheries Commission Canadian Vancouver area.

| Age | Year <br> class | Population number | $\underset{\frac{\circ}{0}}{\text { Cumulative }}$ | Mean length (cm) |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 1986 | 22,912 | 1.0 | 13.0 |
| 4 | 1985 | 56,916 | 3.4 | 21.0 |
| 5 | 1984 | 94,615 | 7.3 | 21.5 |
| 6 | 1983 | 100,767 | 11.5 | 22.7 |
| 7 | 1982 | 280, 782 | 23.3 | 23.0 |
| 8 | 1981 | 154,156 | 29.8 | 24.2 |
| 9 | 1980 | 231,827 | 39.5 | 24.6 |
| 10 | 1979 | 242,694 | 49.7 | 25.1 |
| 11 | 1978 | 66,268 | 52.5 | 26.5 |
| 12 | 1977 | 41,801 | 54.2 | 27.4 |
| 13 | 1976 | 128, 032 | 59.6 | 25.1 |
| 14 | 1975 | 16,032 | 60.2 | 27.0 |
| 15 | 1974 | 42,183 | 62.0 | 27.7 |
| 16 | 1973 | 73,581 | 65.1 | 26.9 |
| 18 | 1971 | 31,170 | 66.4 | 25.5 |
| 19 | 1970 | 34,563 | 67.9 | 25.9 |
| 20 | 1969 | 14,409 | 68.5 | 24.0 |
| 21 | 1968 | 58,163 | 70.9 | 26.2 |
| 22 | 19.67 | 48,633 | 72.9 | 25.0 |
| 24 | 1965 | 25,173 | 74.0 | 26.0 |
| 25 | 1964 | 25,238 | 75.1 | 25.0 |
| 26 | 1963 | 80,391 | $\therefore 78.4$ | 26.6 |
| 27 | 1962 | 353 | 78.4 | 31.0 |
| 28 | 1961 | 50,500 | 80.6 | 28.7 |
| 29 | 1960 | 4,558 | 80.8 | 29.2 |
| 30 | 1959 | 29,378 | 82.0 | 26.9 |
| 31. | 1958 | 17,014 | 82.7 | 27.9 |
| 34 | 1955 | 35,197 | 84.2 | 29.3 |
| 35 | -1954 | 14,409 | 84.8 | 24.0 |
| 36 | 1953 | 56,148 | 87.1 | 26.1 |
| 37 | 1952 | - 353 | 87.1 | 31.0 |
| 38 | 1951 | 11,636 | 87.6 | 30.0 |
| 39 | 1950 | 29,020 | 88.8 | 30.0 |
| 41 | 1948 | 353 | 88.9 | 31.0 |
| 42 | 1947 | 28,668 | 90.1 | 30.0 |
| 43 | 1946 | 13,038. | 90.6 | 32.4 |
| 48 | 1941 | 17,243 | 91.3 | 30.8 |
| 50 | 1939 | 4,628 | 91.5 | 33.0 |
| 52 | 1937 | 63,074 | 94.2 | 37.7 |
| 53 55 | 1936 | 15,418 | 94.8 | 29.4 |
| 53.5 | 1934 | 28,470 | 96.0 | 23.8 |
| 58 | 1931 | 7,008 | 96.3 | 28.0 |
| 62 | 1927 | 16;820 | 97.0 | 30.5 |
| 64 | 1925 | 37,853 | 98.6 | 26.7 |
| 68 | 1921 | 12,615 | 99.1 | 30.0 |
| Above, below, or between key lengths |  | 21,025 | 100.0 | -- |
| Tot |  | 2,385,085 | 100.0 | 25.6 |

Table 47. --Population estimates for splitnose rockfish by age group and mean length at age in the International North Pacific Fisheries Commission Vancouver area.

| Age | Year <br> class | Population number | Cumulative | Mean length (cm) |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 1987 | 11,878 | 0.3 | 12.0 |
| 3 | 1986 | 268,790 | 7.6 | 13.1 |
| 4 | 1985 | 180,986. | 12.5 | 19.1 |
| 5 | 1984 | 241,471 | 19.0 | 20.0 |
| 6 | 1983 | 136,230 | 22.7 | 22.6 |
| 7 | 1982 | 436,464 | 34.6 | 22.2 |
| 8 | 1981 | 220,588 | 40.5 | 23.8 |
| 9 | 1980 | 303,466 | 48.8 | 24.6 |
| 10 | 1979 | 317,692 | 57.4 | 25.1 |
| 11 | 1978 | 86,746 | 59.7 | 26.5 |
| 12 | 1977 | 55,431 | 61.2 | 27.3 |
| 13 | 1976 | 167,596 | 65.8 | 25.1 |
| 14 | 1975 | 20,986 | 66.3 | 27.0 |
| 15 | 1974 | 55,257 | 67.8 | 27.7 |
| 16 | 1973 | 96,319 | 70.4 | 26.9 |
| 18 | 1971 | 40, 802 | 71.6 | 25.5 |
| 19 | 1970 | 45,243 | 72.8 | 25.9 |
| 20 | 1969 | 18,862 | 73.3 | 24.0 |
| 21 | 1968 | 76,137 | 75.4 | 26.2 |
| 22 | 1967 | 63,661 | 77.1 | 25.0 |
| 24 | 1965 | 32,952 | 78.0 | 26.0 |
| 25 | 1964 | .33,037 | 78.9 | 25.0 |
| 26 | 1963 | 105,233 | 81.7 | 26.6 |
| 27 | 1962 | $\because . \quad 462$ | 81.7 | 31.0 |
| 28 | 1961 | 66,106 | 83.5 | 28.7 |
| 29 | 1960 | 5,966 | 83.7 | 29.2 |
| 30 | 1959 | 38,457 | 84.7 | 26.9 |
| 31 | 1958 | 22,272 | 85.3 | 27.9 |
| 34 | 1955. | 46,074 | 86.6 | 29.3 |
| 35 | 1954 | 18,862 | 87.1 | 24.0 |
| 36 | 1953 | 73,498 | 89.1 | 26.1 |
| 37 | 1952 | 462 | 89.1 | 31.0 |
| 38 | 1951 | 15,232 | 89.5 | 30.0 |
| 39 | 19.50 | 37,988 | 90.5 | 30.0 |
| 41 | 1948 | - 462 | 90.5 | 31.0 |
| 42 | 1947 | 37,526 | 91.6 | 30.0 |
| 43 | 1946 | 17.067 | 92.0 | 32.4 |
| 48 | $1941$ | 22,571. | 92.6 | 30.8 |
| 50 | - 1939 | 6,058 | 92.8 | 33.0 |
| 52 | 1937 | 82,565 | 95.0 | 37.7 |
| 53 | 1.936 | 20,182 | 95.6 | 29.4 |
| 55 | 1934 | 37,268 | 96.6 | 23.8 |
| 58. | 1931 | 9,174 | 96.8 | 28.0 |
| 62 | 1927 | 22,017 | 97.4 | 30.5 |
| 64 | 1925 | 49,550 | 98.8 | 26.7 |
| 68 | 1921 | 16,513 | 99.2 | 30.0 |
| Above, between | ngths | 28,027 | 100.0 | -- |
| Total ${ }^{\text {a }}$ |  | 3,690,187 | 100.0 | 24.1 |

[^4]Table 48 .--Population estimates for splitnose rockfish by age group and mean length at age for all International North Pacific Fisheries Commission areas combined.

| Age | Year <br> class | Population number | Cumulative 웅 | Mean length (cm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1988 | 28,012 | 0.1 | 08.0 |
| 2 | 1987 | 2,006,718 | 4.8 | 13.1 |
| 3 | 1986 | 3,904,692 | 13.9 | 14.2 |
| 4 | 1985 | 5,820,569 | 27.5 | 17.4 |
| 5 | 1984 | 7,771,654 | 45.6 | 19.1 |
| 6 | 1983 | 2,607,410 | 51.7 | 20.3 |
| 7 | 1982 | 5,058,316 | 63.6 | 20.4 |
| 8 | 1981 | 2,131,642 | 68.5 | 21.9 |
| 9 | 1980 | 1,098,095 | 71.1 | 24.1 |
| 10 | 1979 | 1,230,321 | 74.0 | 24.9 |
| 11 | 1978 | 292,227 | 74.7 | 25.6 |
| 12 | 1977 | 784,669 | 76.5 | 22.7 |
| 13 | 1976 | 517,644 | 77.7 | 24.5 |
| 14 | 1975 | 51,425 | 77.8 | 27.0 |
| 15 | 1974 | 391, 140 | 78.7 | 25.9 |
| 16 | 1973 | 366,387 | 79.6 | 27.7 |
| 18 | 1971 | 384,362 | 80.5 | 23.9 |
| 19 | 1970 | 138,601 | 80.8 | 25.7 |
| 20 | 1969 | 100,383 | 81.0 | 24.0 |
| 21 | 1968 | 188, 614 | 81.5 | 27.0 |
| 22 | 1967 | 202,349 | 81.9 | 25.2 |
| 24 | 1965 | 116,742 | 82.2 | 26.0 |
| 25 | 1964 | 145,820 | 82.6 | 25.0 |
| 26 | 1963 | 518,329 | 83.8 | 27.1 |
| 27 | 1962 | 55,279 | 83.9 | 31.0 |
| 28 | 1961 | 348,435 | 84.7 | 28.2 |
| 29 | 1960 | 118,610 | 85.0 | 29.9 |
| 30 | 1959 | 186,571 | 85.4 | 28.2 |
| 31 | 1958 | 384,019 | 86.3 | 27.8 |
| 34 | 1955 | 465,228 | 87.4 | 25.7 |
| 35 | 1954 | 100,383 | 87.6 | 24.0 |
| 36 | 1953 | 391,570 | 88.6 | 26.4 |
| 37 | 1952 | 55,279 | 88.7 | 31.0 |
| 38 | 1951 | 228,601 | 89.2 | 29.6 |
| 39 | 1950 | 194,205 | 89.7 | 30.3 |
| 41 | 1948 | - 55,279 | 89.8 | 31.0 |
| 42 | 1947 | 138,925 | 90.1 | 30.0 |
| 43 | 1946 | 180,826 | 90.5 | 32.2 |
| 45 | 1944 | 49,659 | 90.7 | 34.0 |
| 46 | 1943 | 24,477 | 90.7 | 35.0 |
| 48 | 1941 | 119,670 | 91.0 | 31.0 |
| 49 | 1940 | 24,477. | 91.1 | 35.0 |
| 50 | 1939 | 101,851 | 91.3 | 34.5 |
| 51 | 1938 | 64,337 | 91.4 | 29.0 |
| 52 | 1937 | 103,469 | 91.7 | 37.6 |
| 53 | 1936 | 295,763 | 92.4 | 29.2 |
| 55 | 1934 | 345,676 | 93.2 | 26.4 |
| 56 | 1933 | 24,830 | 93.2 | 34.0 |
| 57 | 1932 | 100,100 | 93.5 | 29.7 |
| 58 | 1931 | 192,644 | 93.9 | 28.6 |
| 61 | 1928 | 35,763 | 94.0 | 31.0 |
| 62 | 1927 | 148,330 | 9.4 .4 | 30.9 |
| 64 | 1925 | 288,659 | 95.0 | 27.3 |
| 66 | 1923 | 30,042 | 95.1 | 32.0 |
| 68 | 1921 | 78,501 | 95.3 | 30.0 |
| Above, below, or between key lengths |  | 2,016,184 | 100.0 | -- |
| Total* |  | 42,803,763 | 100.0 | 20.2 |

Table 49.--The length-weight relationships from the 1989 triennial west coast survey using a linear least squares fit for the equation: Estimated Weight ( g ) $=\mathrm{a} *$ Fork Length (cm), ** b.

| Species | Sex | Nunber sampled | Length - weight coefficients |  | Predicted weight ot length |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\bullet$ | $b$ |  | (gm) |  |
| Pacific hake |  |  |  |  | 30 cm | 50 cm | 70 cm |
|  | M | 344 | 0.0080136 | 2.939627 | 176.2 | 791.0 | 2126.8 |
|  | F | 517 | 0.0048625 | 3:076383 | 170.2 | 819.5 | 2307.2 |
|  | T | 861 | 0.0054866 | 3.043290 | 171.6 | 812.4 | 2261.9 |
| Sablefish |  |  |  |  | 40 cm | 60 cm | 80 cm |
|  | H | 67 | 0.0008418 | 3.639501 | 570.0 | 2493.3 | 7104.1 |
|  | F | 70 | 0.0015331 | 3.473664 | 563.1 | 2302.9 | 6255.6 |
|  | T | 137 | 0.0011674 | 3.549646 | 567.5 | . 2393.5 | 6645.3 |
| Arrowtooth fl. |  | $\because$ |  |  | 30 cm | 45 cm | 60 cm |
|  | H | 169 | 0.0104690 | 2.957681 | 244.8 | 812.0 | 1901.6 |
|  | F | 240 | 0.0037501 | 3.264323 | 248.8 | 934.7 | 2390.6 |
|  | T | 409 | 0.0044811 | 3.210228 | 247.3 | 909.0 | 2289.0 |
| Bocaccio |  |  |  |  | 30 cm | 45 cm | 60 cm |
|  | M | 42 | 0.0069212 | 3.136198 | 297.0 | 1059.2 | 2611.1 |
|  | F | 37 | 0.0103080 | 3.016847 | 294.7 | -1001.5 | 2385.5 |
|  | T | 79 | 0.0074708 | 3.113927 | 297.2 | 1050.4 | 2572.8 |
| Canary rf. |  |  |  |  | 20 cm | 40 cm | 55 cm |
|  | $\stackrel{N}{ }$ | 160 | 0.0125210 | . 3.082479 | 128.2 | 1086.4 | 2899.3 |
|  | F | 128 | 0.0153660 | 3.027399 | 133.5 | 1088.8 | 2855.6 |
|  | . $T$ | 288 | 0.0136900 | 3.058656 | 130.6 | 1087.8 | 2881.2 |
| Chilipepper |  |  |  |  | 25 cm | 35 cm | 45 cm |
|  | H | 96 | 0.0021121 | 3.570093 | 206.8 | 687.4 | 1685.9 |
|  | F | 146 | 0.0037301 | 3.377893 | 196.7 | 612.9 | 1432.5 |
|  | $T$ | 242 | 0.0035663 | 3.398049 | 200.7 | 629.6 | 1478.8 |
| Darkblot. rf. |  |  |  |  | 20 cm | 30 cm | 45 cm |
|  | M | 80 | 0.0120820 | 3.133990 | 144.4 | 514.5 | 1833.5 |
|  | F | 111 | 0.0120080 | 3.132049 | 142.7 | 508.0 | 1808.9 |
|  | T | 191 | 0.0121620 | 3.129598 , | 143.4 | 510.3 | 1815.0 |
| Dover sole |  |  |  |  | 20. cm | 35 cm | 50 cm |
|  | M | 167 | 0.0059527 | 3.132697 | 70.9 | 409.1 | 1250.5 |
|  | F | 234 | 0.0060739 | 3.133248 | 72.4 | 418.2 | 1278.7 |
|  | T | 401 | 0.0057704 | 3.145116 | 71.3 | 414.5 | 1272.5 |
| English sole | $\cdots$ |  |  |  | 20 cm | 30 cm | 40 cm |
|  | M | 132 | 0.0143600 | 2.874093 | 78.8 | 252.7 | 577.6 |
|  | F | 140 | 0.0076206 | 3.065090 | 74.1 | 256.7 | 620.1 |
|  | T | 272 | 0.0099870 | 2.986591 | 76.7 | 257.6 | 608.3 |
| Greenstr. rf. |  |  |  |  | 25 cm | 30 cm | 35 cm |
|  | M | 39 | 0.2306900 | 2.157430 | 239.3 | 354.7 | 494.6 |
|  | F | 59 | 0.0079428 | 3.618517 | 213.5 | 380.4 | 620.0 |
|  | T | 98 | 0.0312790 | 2.776326 | 230.4 | 381.5 | 584.3 |
| Lingcod |  |  |  |  | 30 cm | 60 cm | 90 cm |
|  | $M$ | 37 | 0.0013777 | 3.476209 | 187.9 | 2091.1 | 8560.7 |
|  | F | 71 | 0.0042633 | 3.185964 | 216.7 | 1971.8 | 7176.1 |
|  | T | 108. | 0.0039782 | 3.209859 | 219.3 | 2029.1 | 7456.3 |
| Pac. oc. perch |  |  |  |  | 20 cm | 30 cm | 45 cm |
|  | M | 238 | 0.0092261 | 3.143272 | 113.4 | 405.5 | 1450.5 |
|  | F | 262 | 0.0119330 | 3.072970 | 118.8 | 413.0 | 1435.6 |
|  | 1 | 500 | 0.0104930 | 3.107952 | 116.0 | 409.0 | 1442.1 |

Table 49.--Continued.

| Species | Sex | Nunber Sampled | Length - weight coefficients |  | Predicted weight at length |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | B | b |  | (9m) |  |
| Petrale sole |  |  |  |  | 25 cm | 35 cm | 45 cm |
|  | M | 25 | 0.0035437 | 3:350348 | 171.0 | 528.0 | 1225.4 |
|  | F | 49 | 0.0022689 | 3.473527 | 162.8 | 523.8 | 1254.0 |
|  | T | 74 | 0.0027121 | 3.425217 | 166.6 | 527.3 | 1247.1 |
|  |  |  |  |  | 25 cm | 30 cm | 40 cm |
| Redstripe rf. | H | 46 | 0.0116590 | 3.060951 | 221.7 | 387.3 | 934.3 |
|  | F | 41 | 0.0159050 | 2.960045 | 218.5 | 374.9 | 878.4 |
|  |  | 87 | 0.0178510 | 2.930886 | 223.3 | 381.0 | 885.3 |
| Rex sole |  |  |  |  | 20 cm | 30 cm | 40 cm |
|  | M | 174 | 0.0051435 | 3.069746 | 50.7 | 176.1 | 425.8 |
|  | F | 177 | 0.0049536 | 3.090012 | 51.9 | 181.7 | 441.9 |
|  | T | 351 | 0.0048336 | 3.093232 | 51.1 | 179.2 | 436.3 |
| Rock sole |  |  |  |  | 20 cm | 30 cm | 40 cm |
|  | H | 19 | 0.0184120 | 2.875517 | 101.4 | 325.5 | 744.5 |
|  | F | 40 | 0.0077163 | 3.144639 | 95.2 | 340.7 | 842.0 |
|  | T | 59 | 0.0099488 | 3.070287 | 98.2 | 341.2 | 825.2 |
| Rosethorn rf. |  |  |  |  | 15 cm | 20 cm | 25 cm |
|  | M | 25 | 0.0055439 | 3.352985 | 48.7 | 127.7 | 269.8 |
|  | $F$ | 30 | 0.0115550 | 3.112524 | 52.9 | . 129.5 | 259.4 |
|  | T | 55 | 0.0095003 | 3.177786 | 51.9 | 129.5 | 263.1 |
| Sharpehin rf. |  |  | . 0.0197510 |  | 25 cm | 30 cm | 35 cm |
|  | M | 86 | 0.0117510 | 3.084261 | 240.8 | 422.6 | 679.8 |
|  | F | 49 | 0.0107030 | 3.113610 | 241.1 | 425.3 | 687.3 |
|  | T | 135 | 0.0111450 | 3.101054 | 241.1 | 424.3 | 684.4 |
| Splitnose rf. |  |  |  |  | 15 cm | 20 cm | 25 cm |
|  | M | 35 | 0.0114880 | 3.156849 | 59.3 | 147.0 | 297.4 |
|  | $F$ | 22 | 0.0376240 | 2.771854 | 68.4 | 152.0 | 282.1 |
|  | T | 57 | 0.0167920 | 3.034296 | 62.2 | 148.9 | 293.0 |
| Stripetail rf. |  |  |  |  | 15 cm | 20 cm | 30 cm |
|  | M | 28 | 0.0219310 | 2.874006 | 52.6 | 120.3 | 385.8 |
|  | F | 43 | 0.0227750 | 2.886880 | 56.6 | 129.8 | 418.5 |
|  | T | 71 | 0.0145010 | 3.022707 | 52.0 | 124.2 | 423.0 |
| Yellowtail rf. |  |  |  |  | 30 cm | 40 cm | 50 cm |
|  | M | 220 | 0.0113280 | 3.090761 | 416.5 | 1013.3 | 2019.6 |
|  | F | 212 | 0.0166160 | 2.987168 | 429.5 | 1014.3 | 1975.3 |
|  | T | 432 | 0.0139260 | 3.034519 | 422.8 | 1012.3 | 1992.4 |

## FIGURES

No. Page
1.--The poly-Nor Eastern bottom trawl and roller gear-used during the 1989 west coast triennial bottom trawl survey ..... 95
2 .--The 1989 bottom trawl survey area and sampling strata. Shadedareas are high-density sampling strata. Values shown in eachstratum refer to the stratum code (top), number, of plannedstations (middle), and number of successfully completed stations(bottom). International North Pacific Fisheries Commissionstatistical areas are shown to the left96
3.--The location of successful tows during the 1989 west coast bottom trawl survey ..... 97
4 .--Observed sea surface temperatures during the 1989 west coast survey and previous triennial bottom trawl surveys. ..... 98
5 .--Observed bottom temperatures during the 1989 west coast survey and previous triennial bottom trawl surveys. ..... 99
6 .--Pacific hake distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey ..... 100
7.--Sablefish distribution and relative abundance-(kg/ha) from the 1989 west coast bottom trawl survey ..... 101
8.--Arrowtooth flounder distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey ..... 102
9.--Bocaccio distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey ..... 103
10. --Canary rockfish distribution and relative abundance -(kg/ha) from the 1989 west coast bottom trawl survey ..... 104
11.--Chilipepper distribution and relative abundance (kg/ha) -from the 1989 west coast bottom trawl survey ..... 105
12 .--Darkblotched rockfish distribution, and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey ..... 106
13.--Dover sole distribution and relative abundance (kg/ha) from-the 1989 west coast bottom trawl survey ..... 107
14 .--English sole distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey ..... 108
15.--Greenstriped rockfish distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey. ..... 109
16.--Lingcod distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey ..... 110
17 .--Pacific halibut distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey ..... 111
18.--Pacific ocean perch distribution and relative abundance (kg,/ha) from the 1989 west coast bottom trawl survey ..... 112FIGURES
No.
Page
19. --Pacific sanddab distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey ..... 113
20 .--Petrale sole distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey ..... 114
21 .--Red\&ripe rockfish distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey... ..... 115
22 .--Rex sole distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey ..... 116
23.--Sharpchin rockfish distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey ..... 117
24. --Shortbelly rockfish distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey ..... 118
25 --Shortspine thornyhead distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey. ..... 119
26 --Silvergray rockfish distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey. ..... 120
27.--Spiny dogfish distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey ..... 121
28.--Splitnose rockfish distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey. ..... 122
29.--Stripetail rockfish distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey. ..... 123
30. --Widow rockfish distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey ..... 124
31.--Yellowtail rockfish distribution and relative abundance-(kg/ha) from the 1989 west coast bottom trawl survey. ..... 125
32 .--Pacific hake estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths $55-366 \mathrm{~m}$. Lengths ranged $9-85 \mathrm{~cm}$ ..... 126
33. --Pacific hake estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths $55-183 \mathrm{~m}$. Lengths ranged $9-85 \mathrm{~cm}$. ..... 127
34. --Pacific hake estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths $184-366 \mathrm{~m}$. Lengths ranged $9-80 \mathrm{~cm}$. ..... 128
35 .--Sablefish estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths 55-366 m. Lengths ranged 19-95 cm ..... 129
36. --Sablefish estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths $55-183 \mathrm{~m}$. Lengths ranged $21-95 \mathrm{~cm}$ ..... 130
37. --Sablefish estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths $184-366 \mathrm{~m}$. Lengths ranged $19-85 \mathrm{~cm}$ ..... 131

| survey for depths 55-366 m. |  |  |
| :---: | :---: | :---: |
|  |  |  |

39.--Bocaccio estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depthes 55-366 m. Lengths ranged $14-79 \mathrm{~cm} . . . .$.133
40. --Canary rockfish estimated size composition by International North) Pacific Fisheries Commission area -from the 1989 bottom trawl. survey for depths $55-366 \mathrm{~m}$. Lengths ranged $12-63 \mathrm{~cm} . \ldots . . . . . .$.
41.--Chilipepper estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths 55-366 m. Lengths ranged 9-56 cm.................. 135
42 .--Darkblotched rockfish estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths 5-5-366 m. Lengths ranged 9-48 cm . . . . . . . . . 136
43.--Dover sole estimated size composition by International North Pacific Fisheries Commission area- from the 1989 bottom trawl survey for depths 55-366 m. Lengths ranged $14-66 \mathrm{~cm} . . . . . . . . . . .$.
44.--English sole estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths $55-366 \mathrm{~m}$. Lengths ranged $14-47 \mathrm{~cm}$.138
45.--Greenstriped rockfish estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths 55-366 m. Lengths ranged 9-40 cm................. 139
46.--Lingcod estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths $55-366 \mathrm{~m}$. Lengths ranged $12-113 \mathrm{~cm} . \ldots . . . .$.

48.--Pacific ocean perch estimated size composition by International

North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths 55-366 m. Lengths ranged $12-50 \mathrm{~cm} . . . . . . . . . .$.

50 .--Petrale sole estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths 55-366 m. Lengths ranged 16-60 cm............... 144
51. --Redstripe rockfish estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths 55-366 m. Lengths ranged 15-44 cm................ 145

52 .--Rex sole estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths 55-366m. Lengths ranged 8-43 cm................ 146

## FIGURES

No.
Page

54 .--Shortbelly rockfish estimated size composition by International North Pacific Fisheries Commission area from-the 1989 bottom trawl survey for depths 55-366 m. Lengths ranged 8-31 cm................. 148

55 .--Shortspine thornyhead estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths $55-366 \mathrm{~m}$. Lengths ranged $7-49 \mathrm{~cm} . . . . . . . . . . .$.
56.--Silvergray rockfish estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths 55-366 m. Lengths ranged 43-67 cm................. 150
57.--Splitnose rockfish estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths $55-366 \mathrm{~m}$. Lengths ranged 7-38 cm.................... 151
58.--Stripetail rockfish estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths 55-366m. Lengths ranged 8-33 cm................... 152
59.--Widow rockfish estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths 55-366 m. Lengths ranged 16-52 cm................... 153
60.--Yellowtail rockfish estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths $55-366 \mathrm{~m}$. Lengths ranged $18-56 \mathrm{~cm}$154
61.--Estimated age composition for Pacific hake by sex and International North Pacific Fisheries Commission (INPFC) area for all depths sampled (55-366 m) from the 1989 bottom trawl survey155

62 .--Estimated age composition for Pacific hake by sex and International North Pacific Fisheries Commission (INPFC) area for depths between 55 and 183 m from the 1989 bottom trawl survey156
63.--Estimated age composition for Pacific hake by sex and International North Pacific Fisheries Commission (INPFC) area for depths between 184 and 366 m from the 1989 bottom trawl survey.157
64. --Estimated age composition for Pacific ocean perch by sex and, International North Pacific Fisheries Commission (INPFC) area for all depths sampled (55-366 m) from the 1989 bottom trawl survey..... 158
65.--Estimated age composition for Pacific ocean perch by sex and International North Pacific Fisheries Commission (INPFC) area for depths between 55 and 183 m from the 1989 bottom trawl survey....... 159
66. --Estimated age composition for Pacific ocean perch by sex and International North Pacific Fisheries Commission area (INPFC) for depths between 184 and 366 m from the 1989 bottom trawl survey...... 160
67.--Estimated age composition for canary rockfish by sex and International North Pacific Fisheries Commission (INPFC) area for all depths sampled (55-366 m) from the 1989 bottom trawl survey..... 161
68. --Estimated age composition for canary rockfish by sex and International North Pacific Fisheries Commission (INPFC) area for depths between 55 and 183 m from the 1989 bottom trawl survey....... 162
69.--Estimated age compositionfor canary rockfish by sex and International North Pacific Fisheries Commission (INPFC) area for depths between 184 and 366 m from the 1989 bottom trawl survey...... 163
70 .--Estimated age compositionfor splitnose rockfish by sex and International North Pacific Fisheries Commission (INPFC) area for -all depths sampled (55-366 m) from the 1989 bottom trawl survey..... 164
71. --Estimated age composition for splitnose rockfish by sex and International North Pacific Fisheries Commission area for depths between 55 and 183 m from the 1989 bottom trawl survey............... 165
72 .--Estimated age composition for splitnose rockfish by sex and International North Pacific Fisheries Commission area for depths between 184 and 366 m from the 1989 bottom trawl survey.............

## THIS PAGE INTENTIONALLY LEFT BLANK

Poly Nor'Eastern trawl
Roller gear

| Netring | Polyethylane, 5 ineh, 4 mmand 5 mm tuine. 4 mmep and aides. 5 mm bottom andintermediate: |
| :---: | :---: |
| Headropo |  wrappets with J/8. 3-ateand polypropylene rope. |
| Footrope (Bolen line) |  rope urapped with polypropyient rope. |
| Fiening line |  A1,300 16a. |
| Redjer goar | 29. 6" eye to aye of $3 / 4^{-}$alametar, $6 \times 19$ galvanited uire rope with $14^{\circ}$ bobbins. |
| Qrasetimea | - 3/8-6k 19 galvaniced-vire rope arapped wich $3 / 8{ }^{\circ}$ polypropylene. Top corner 19.6*; botcom corner a', e.; cop cide panal $19^{\circ} 6^{\circ}$ : bortoa ilde panel $30^{\circ} 66^{\circ}$. Over all langthy are "plui" ehdabled aye at wing tipe. |
| Ribilinas | - 3/4* Sempan 2 and 1 Duralion. Top two 114.17 and bottom two 104.45. (hung gbi of etretehed acan length). Web encured to riblinas, ueing bencele every $16^{\circ}$. |
| Flotacion |  |
| Mentrletors | Polypropylene rape, $1^{-}$diameter, 14 te eircumference and eneured lookely to codend ar ench ribline, it epart, 5 plecet. |
| Spliteling gear |  Fented through 4 galvanleed eteel ringe which art necured to -ach ribline. |
| Stde eenam | pancle are jolned to each other gatherting 3 meahen (4 knote) froo each panal. Panele which are encured to <br>  |
| codend | 110 mathes long a 100 mephes deep. J 1/2- stratehed <br>  |
|  |  ekire encured eo Chaffer. Pull coverape of eodend. |
| cosend diner | Hylen, ne. 18, : $1 / 4^{\circ}$ atratehed mefh, 315 menhei circumference and 200 maenal deap, laced to the 1 nalde of codena. When etretched the liner protrudee 2 to 3 it bayond codend. |
| Note: cha | atrip ileng Inalde of botrdin winge and lunom. |

Eigure 1.--The poly-Nor'Eastern bottom trawl and roller gear used during the igg9. west coast triennial bottom trawl survey.


Figure 2. --The 1989 bottom trawl survey area and sampling strata. Shaded areas are high-density sampling strata. Values shown in each stratum refer to the stratum code (top), number of planned stations (middle), and number of successfully completed stations (bottom). International North Pacific Fisheries Commission statistical areas are shown to the left.


Figure 3.--The location of successful tows during the 1989 west coast bottom trawl survey.


Figure 4.--Observed sea surface temperatures during the 1989 west coast survey and previous triennial bottom trawl surveys.


Figure 5.--Observed bottom temperatures during the 1989 west coast survey and previous triennial bottom trawl surveys.


[^5]

Figure 7.--Sablefish distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey.


[^6]

Figure 9.--Bocaccio distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey.



Figure 11.--Chilipepper distribution and relative abundance (kg/ha) from the 1989 west coast
bottom trawl survey.


106

[^7]

$108$




Figure 17.--Pacific halibut distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey.


112

Figure 18.--Pacific ocean perch distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey.


Figure 19.--Pacific sanddab distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey.




[^8]


[^9]

119



Figure 27.--Spiny dogfish distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey.


Figure 28. --Splitnose rockfish distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey.




Figure $31 .--Y e l$ lowtail rockfish distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey.


Figure 32.--Pacific hake estimated size composition by International North Pacific Fisheries Commission area from the lg89 bottom trawl survey Eor depths 55-366 m. Lengths ranged 9-85 cm.


Figure 33.--Pacific hake estimated size composition by International North Pacific Fisheries Commision area from the 1989 bottom trawl survey for depths $55-183 \mathrm{~m}$. Lengths ranged 9-85 cm.


Figure 34.--Pacific hake estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths $184-366 \mathrm{~m}$. Lengths ranged 9-80 cm.


Figure 35.--Sablefish estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths $55-366 \mathrm{~m}$. Lengths ranged $19-95 \mathrm{~cm}$.


Figure 36.--Sablefish estimated population size composition by International North Pacific Fisheries Commission area from the 1989 trawl survey for depths. $55-183 \mathrm{~m}$. Lengths ranged $21-95 \mathrm{~cm}$.


Figure 37. --Sablefish estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths $184-366 \mathrm{~m}$. Lengths ranged $19-85 \mathrm{~cm}$.


Figure 38.--Arrowtooth flounder estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths $55-366 \mathrm{~m}$. Lengths ranged $12-81 \mathrm{~cm}$.


Figure 39.--Bocaccio estimated size composition by International North Pacific Fisheries Comission area from the 1989 bottom trawl survey for depths $55-366 \mathrm{~m}$. Lengths ranged $14-79 \mathrm{~cm}$.


Figure 40.--Canary rockfish estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths 55-366.m. Lengths ranged 12-63 cm.


Figure 41.--Chilipepper estimated size composition by International North Pacific Fisheries Commission area from thege bottom trawl survey depths $55-366 \mathrm{~m}$. Lengths ranged 9-56 cm.


Figure 42.--Darkblotched rockfish estimated size composition by International North Pacific Fisheries commission area from the 1989 bottom trawl for depths $55-366 \mathrm{~m}$. Lengths ranged $9-48 \mathrm{~cm}$.


Figure 43.--Dover sole estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey. for depths 55-366 m. Lengths ranged 14-66 cm:


Figure 44.--English sole estimated size composition by International North Pacific fisheries Commission area from the 1989 bottom trawl survey for depths $55-366 \mathrm{~m}$. Lengths ranged $14-47 \mathrm{~cm}$.


Figure 45.--Greenstriped rockfish estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths $55-366 \mathrm{~m}$. Lerigths ranged $9-40 \mathrm{~cm}$.


Figure 46.--Lingcod estimated size composition by International North Pacific fisheries Comission area from the 1989 bottom trawl survey for depths $55-366 \mathrm{~m}$. Lengths ranged $12-113 \mathrm{~cm}$.


Figure 47.--Pacific halibut estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths $55-366 \mathrm{~m}$. Lengths ranged $27-157 \mathrm{~cm}$.


Figure 4日.--Pacific ocean perch estimated size composition by International North Pacific Fisheries Commission area from the l989 bottom trawl survey for depths 55-366 m. Lengths ranged 12-50 cm.


Figure 49.--Pacific sanddab estimated size composition by International North-Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths $55-366 \mathrm{~m}$. Lengths ranged $9-34 \mathrm{~cm}$.


Figure 50 .--Petrale sole estimated size composition by International North Pacific fisheries Commission area from the 1989 bottom trawl survey for depths $55-366 \mathrm{~m}$. Lengths ranged $16-60 \mathrm{~cm}$.


Figure 51.--Redstripe rockfish estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths 55-366 m. Lengths ranged $15-4,4 \mathrm{~cm}$.


Figure 52.--Rex sole estimated size composition by International North Pacific Fishertes Commission area from the 1989 bottom trawl survey for depths $55-366 \mathrm{~m}$. Lengths ranged $8-43 \mathrm{~cm}$.


Figure 53.--Sharpchin rockfish estimated size composition by International North Pacific Fisheries Comission area from the 1989 bottom trawl survey for depths $55-366 \mathrm{~m}$. Lengths ranged $13-37 \mathrm{~cm}$.


Figure 54.--Shortbelly rockfish estimated size composition by International North Pacific fisheries Commission area from the 1989 bottom trawl survey for depths $55-366 \mathrm{~m}$. Lengths ranged $8-31 \mathrm{~cm}$.


Figure 55.--Shortspine thornyhead estimated size composition by International North Pacific fisheries Commission area from the 1989 bottom trawl survey for depths $55-366 \mathrm{~m}$. Lengths ranged 7-49 cm.


Figure 56.--Silvergray rockfish estimated size composition by International North Pacific Fisheries Commission arèa from the 1989 bottom trawl survey for depths $55-366 \mathrm{~m}$. Lengths ranged $43-67 \mathrm{~cm}$.


Figure 57.--Splitnose rockfish estimated size composition by International North Pacific Fisheries Commission area from the 1989 bottom trawl survey for depths $55-366 \mathrm{~m}$. Lengths ranged $7-38 \mathrm{~cm}$.


Figure 58.--Stripetall rockfish estimated size composition by International North Pacific Fisheries Commission area from the lig9 bottom trawl survey for depths $55-366 \mathrm{~m}$. Lengths ranged 8-33 cm.


Figure 59.-Widow rackfish estimated size composition by International North Pacific fisheries Commission area from the 1989 bottom trawl survey for depths $55-366 \mathrm{~m}$. Lengths.ranged $16-52 \mathrm{~cm}$.


Figure 60.--Yellowtail rockfish estimated size composition by International North Pacific Eisheries Commission area from the 1989 bottom trawl survey for depths $55-366 \mathrm{~m}$. Lengths ranged $18-56 \mathrm{~cm}$.









Figure 61.--Estimated age composition for Pacific hake by sex and International North Pacific Fisheries Commission (INPFC) area for all depths sampled (55-366 m) from the 1989 bottom trawl survey.


Figure 62. --Estimated age composition for Pacific hake by sex and International North Pacific Fisheries Commission (INPFC) area for depths between 55 and 183 m from the 1989 bottom trawl survey.



Figure 64. --Estimated age composition for Pacific ocean perch by sex and International North Pacific Fisheries Commission (INPFC) area for all depths sampled (55-366 m) from the 1989 bottom trawl survey.



Figure 65 .--Estimated age composition for Pacific ocean perch by sex and International North Pacific Fisheries Commission (INPFC) area for depths between 55 and 183 m from the 1989 bottom trawl survey.


Figure 66.--Estimated age composition for Pacific ocean perch by sex and International North Pacific Eisheries Commission (INPFC) area for depths between 184 and 366 m from the 1989 bottom trawl survey.




AGE (YEARS)
Figure 67.-Estimated age composition for canary rockfish by sex and International North Pacific Fisheries Commission


Figure 68.--Estimated age composition for canary rockfish by sex and International North Pacific Fisheries Commission (INPFC) area for depths between 55 and 183 m from the 1989 bottom trawl surve.y.


Figure 69. --Estimated age composition for canary rockfish by sex and International North Pacific Fisheries Commission
(INPFC) area for depths between 184 and 366 m from the 1989 bottom trawl survey.




AGE (YEARS)
Figure 70.--Estimated age composition for splitnose rockfish by sex and International North Pacific Fisheries Commission (INPFC) area for all depths sampled (55-366 m) from the 1989 bottom trawl survey.


Figure 71.--Estimated age composition for splitnose rockfish by sex and International North Pacific Fisheries Commission (INPFC) area for depths between 55 and 183 m from the. 1989 bottom trawl survey.




Figure 72.--Estimated age composition for splitnose rockfish by sex and International North Pacific Fisheries Commission (INPFC) area for depths between 184 and 366 m from the 1989 bottom trawl survey.

We are grateful to the many participants of the 1989 west coast triennial bottom trawl survey, most of which were from the AFSC. We recieved additional help at sea from Brian Jarvis of Southwest Fisheries Science Center's Tiburon Laboratory, Elaine Stewart of Oregon Department of Fish and Wildlife, and Jean Rogers of Oregon State University. We want to express our thanks to the captains and crew aboard the Pat San Marie and the Golden Fleece for providing safe and efficient platforms from which to conduct our operations. Special thanks go to Frank Shaw, Gary Mundell, Charlie Leap, Kathi Zecca, and Wendy Carlson for their roles in data editing, document preparation, and graphics support.

## CITATIONS

Coleman, B.A. 1986. The 1980 Pacific west coast bottom trawl survey of groundfish resources: Estimates of distribution, abundance, length and age composition. U.S. Dep. Commer., NOM Tech. Memo. NMFS-F/NWC-100, 181 p.

Coleman, B.A. 1988. The 1986 Pacific west coast bottom trawl survey of groundfish resources: Estimates of distribution, abundance, length and age composition. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-F/NWC-152, 145 p.

Dark, T.A., and M.E. Wilkins. In press. Trends in the distribution, abundance, and biological characteristics of groundfish in the area off Washington-California based on bottom trawl surveys in 1977, 1980, 1983, and 1986. NOM, Technical Report NMFS 117, 000 p.

Eschmeyer, W.N., E.S. Herald, and H. Hammann. 1983: A field guide to Pacific coast fishes of North America. Houghton Mifflen Co., Boston, MA, 336 p.

Gunderson, D.R., and T.M. Sample. 1980. Distribution and abundance of rockfish off Washington, Oregon, and California during 1977. Mar. Fish. Rev. 42(3-4):2-16.

Hughes, S.E. 1976. System for sampling large trawl catches of research vessels. J. Fish. Res. Board Can. 33:833-839.

Kimura, D.K. 1977. Statistical assessments of the age-length key. J. Fish. Res. Board Can. 34:317-324.

Robins, C.R. 1991. Common and scientific names of fishes from the United States and Canada. Am. Fish. Soc., Spec. Publ. 20, Fifth Edition, 183 p.

Weinberg, K.L. In press. Rockfish assemblages of the middle shelf and upper slope off Oregon and Washington. Fish. Bull., U.S. $92(4): 000-000$.

Weinberg, K.L., M.E. Wilkins, and T.A. Dark. 1984. The 1983 Pacific west coast bottom trawl survey of groundfish resources: estimates of distribution, abundance, age and length composition. U.S. Dep. Commer., NOAA Tech Memo. NMFS-F/NWC-70, 376 p .

Westrheim, S.J., and W.E. Ricker. 1978. Bias in using an agelength key to estimate age-frequency distributions. J. Fish. Res. Board Can. 35:184-189.

Copies of this and other NOAA Technical Memorandums are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22167 (web site: www.ntis.gov). Paper and microfiche copies vary in price.

AFSC-
PEREZ, M. A. 1994. Calorimetry measurements of energy value of some Alaskan fishes and squids, 32 p. NTIS No. PB94-152907.

31 RONHOLT. L. L., K. TESHIMA, and W. D. KESSLER. 1994. The groundfish resources of the Aleutian Islands region and southern Bering Sea 1980, 1983, and 1986, 351 p. NTIS No. PB94152915

30 LORENZ, J. M. 1994. Distribution and habitat of adult salmon in the Situk River, Alaska: Potential impacts of flooding from Russell Fiord, 27 p. NTIS No. PB94-151859.

29 IGNELL, S. E., L. J. SIMON, and M. L. DAHLBERG. 1994. Estimation of salmonid bycatch in the 1989 Japanese squid driftnet fishery, 45 p. NTIS No. PB94-152105.

28 MORTENSEN, D. G., and H. SAVIKKO. 1993. Effects of water temperature on growth of juvenile pink salmon (Oncorhynchus gorbuscha), 12 p. NTIS No. PB94-145349.

27 LOW, L-L. (coordinator). 1994. Status of living marine resources off Alaska, 1993, 110 p. NTIS No. PB94-149846.

26 LOW, L-L. (coordinator). 1993. Status of living marine resources off the Pacific coast of the United States for 1993, 90 p. NTIS No. PB94-133733.

25 KINOSHITA, R. K., A. GREIG, J. D. HASTIE, and J. M. TERRY. 1993. Economic status of the groundfish fisheries off Alaska, 1992, 102 p. PB94-142759.

SINCLAIR, E. H. (editor) 1993. Fur seal investigations, 1991, 142 p. NTIS No. PB94-118171.
PARKS, N. B., F. R. SHAW, and R. L HENRY. 1993. Results of a 1988 trawl survey of groundfish resources of the upper continental slope off Oregon, 164 p. NTIS No. PB94-118163.

22 YANG, M-S. 1993. Food habits of the commercially important groundfishes in the Gulf of Alaska in 1990, 150 p . NTIS No. PB94-112463.

21 KINOSHITA, R. K., and J. M. TERRY. 1993. Oregon, Washington, and Alaska exports of edible fishery products, 1992, 52 p. NTIS No. PB93-226652.

20 REEVES, J. E. 1993. Use of lower minimum size limits to reduce discards in the Bristol Bay red king crab (Paralithodes camtschaticus) fishery, 16 p. NTIS No. PB93-228187.

19 SYRJALA, S. E. 1993. Species-specific stratification and the estimate of groundfish biomass in the Eastern Bering Sea, 20 p. PB94-103215.

18 PELLA, J., M. HOFFMAN, S. HOFFMAN, M. MASUDA, S. NELSON, and L. TALLEY. 1993. Adult sockeye and pink salmon tagging experiments for separating stocks in northern British Columbia and southern Southeast Alaska, 1982-1985, 134 p. NTIS No. PB93-226660.

17 SEASE, J. L., J. P. LEWIS, D. C. MCALLISTER, R. L. MERRICK, and S. M. MELLO. 1993. Aerial and ship-based surveys of Steller sea lions (Eumetopias jubatus) in Southeast Alaska, the Gulf of Alaska, and Aleutian Islands during June and July 1992, 57 p. NTIS No. PB93-226025.


[^0]:    ${ }^{a}$ Differences in totals may exist due to rounding.

[^1]:    ${ }^{\text {a }}$ Differences in totals may exist due to rounding.

[^2]:    ${ }^{\text {a }}$ Differences in totals may exist due to rounding.

[^3]:    a Differences in totals may exist due to rounding.

[^4]:    ${ }^{a}$ Differences in totals may exist due to rounding.

[^5]:    Figure 6.--Pacific hake distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey.

[^6]:    Figure 8.--Arrowtooth flounder diatribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey.

[^7]:    Figure 12. --Darkblotched rockfish distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey.

[^8]:    Figure 22.--Rex sole distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey.

[^9]:    Figure 24. --Shortbelly rockfish distribution and relative abundance (kg/ha) from the 1989 west coast bottom trawl survey.

